Patents by Inventor Tae-Ho Cha

Tae-Ho Cha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11990284
    Abstract: A multilayer electronic component according to an exemplary embodiment of the present disclosure may control connectivity of an end of an internal electrode, thereby suppressing occurrence of a short circuit between the internal electrodes, reduced capacitance or lower breakdown voltage. The internal electrode may include a plurality of conductor portions and a plurality of cut-off portions.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: May 21, 2024
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jong Ho Lee, Seon Jae Mun, Gi Long Kim, Tae Gyeom Lee, Byung Rok Ahn, Kyoung Jin Cha
  • Publication number: 20240124077
    Abstract: A vehicle configured for container-swapping, includes: a main frame including a pair of drive modules spaced in a forward/backward direction of the vehicle, and a connecting portion extending in the forward/backward direction of the vehicle to connect the pair of drive modules so that a coupling space is formed therebetween; a container module selectively inserted into the coupling space of the main frame; and a coupling portion configured to couple the main frame and the container to each other while the container module is inserted into the coupling space of the main frame, wherein a driving portion operates and moves the main frame so that the container module is inserted into the coupling space of the main frame.
    Type: Application
    Filed: May 8, 2023
    Publication date: April 18, 2024
    Applicants: Hyundai Motor Company, Kia Corporation
    Inventors: Dong Eun CHA, Han Sam KIM, Tae Kyung LEE, Dae Hee LEE, Jin Ho HWANG, Jun Gu LEE, Sang Heon LEE
  • Publication number: 20240125442
    Abstract: A vehicle light includes: a light lens having a base panel made of a transparent plastic material, an outer paint layer disposed on an outer surface of the base panel, and an inner paint layer disposed on an inner surface of the base panel and including a light-transmitting hole formed therein; and a light source installed to be spaced apart from the light lens, in which light from the light source is transmitted out of the light lens through the light-transmitting hole and the base panel.
    Type: Application
    Filed: July 25, 2023
    Publication date: April 18, 2024
    Applicants: Hyundai Motor Company, Kia Corporation, SL Corporation
    Inventors: Sung Ho PARK, Dong Eun CHA, Dong Woo KIM, Young Ho JO, Tae Seok SEO
  • Patent number: 11069820
    Abstract: A method for fabricating a semiconductor device includes forming a fin type pattern protruding from a substrate and extending in a first direction, forming a field insulating layer covering a limited portion of the fin type pattern on the substrate such that the field insulating layer exposes a separate limited portion of the fin type pattern, forming a gate structure on the field insulating layer and the fin type pattern, the gate structure extending in a second direction, the second direction different from the first direction, forming a first barrier layer containing a nitrogen element in a first region of the field insulating layer, wherein the first region is exposed by the gate structure, adjacent to the gate structure and extending in the second direction and forming a gate spacer on the first barrier layer and on a side wall of the gate structure.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: July 20, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gun Ho Jo, Dae Joung Kim, Jae Mun Kim, Moon Han Park, Tae Ho Cha, Jae Jong Han
  • Publication number: 20200243398
    Abstract: A method for fabricating a semiconductor device includes forming a fin type pattern protruding from a substrate and extending in a first direction, forming a field insulating layer covering a limited portion of the fin type pattern on the substrate such that the field insulating layer exposes a separate limited portion of the fin type pattern, forming a gate structure on the field insulating layer and the fin type pattern, the gate structure extending in a second direction, the second direction different from the first direction, forming a first barrier layer containing a nitrogen element in a first region of the field insulating layer, wherein the first region is exposed by the gate structure, adjacent to the gate structure and extending in the second direction and forming a gate spacer on the first barrier layer and on a side wall of the gate structure.
    Type: Application
    Filed: April 14, 2020
    Publication date: July 30, 2020
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Gun Ho JO, Dae Joung KIM, Jae Mun KIM, Moon Han PARK, Tae Ho CHA, Jae Jong HAN
  • Patent number: 10658249
    Abstract: A method for fabricating a semiconductor device includes forming a fin type pattern protruding from a substrate and extending in a first direction, forming a field insulating layer covering a limited portion of the fin type pattern on the substrate such that the field insulating layer exposes a separate limited portion of the fin type pattern, forming a gate structure on the field insulating layer and the fin type pattern, the gate structure extending in a second direction, the second direction different from the first direction, forming a first barrier layer containing a nitrogen element in a first region of the field insulating layer, wherein the first region is exposed by the gate structure, adjacent to the gate structure and extending in the second direction and forming a gate spacer on the first barrier layer and on a side wall of the gate structure.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 19, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gun Ho Jo, Dae Joung Kim, Jae Mun Kim, Moon Han Park, Tae Ho Cha, Jae Jong Han
  • Publication number: 20190148521
    Abstract: A method for fabricating a semiconductor device includes forming a fin type pattern protruding from a substrate and extending in a first direction, forming a field insulating layer covering a limited portion of the fin type pattern on the substrate such that the field insulating layer exposes a separate limited portion of the fin type pattern, forming a gate structure on the field insulating layer and the fin type pattern, the gate structure extending in a second direction, the second direction different from the first direction, forming a first barrier layer containing a nitrogen element in a first region of the field insulating layer, wherein the first region is exposed by the gate structure, adjacent to the gate structure and extending in the second direction and forming a gate spacer on the first barrier layer and on a side wall of the gate structure.
    Type: Application
    Filed: October 25, 2018
    Publication date: May 16, 2019
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Gun Ho JO, Dae Joung KIM, Jae Mun KIM, Moon Han PARK, Tae Ho CHA, Jae Jong HAN
  • Patent number: 9412842
    Abstract: A gate pattern is formed on a first region of a substrate. An epitaxial layer is formed on a second region of the substrate. A recess is formed in the second region of the substrate by etching the epitaxial layer and the substrate underneath. The first region is adjacent to the second region.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: August 9, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin-Bum Kim, Kyung-Bum Koo, Taek-Soo Jeon, Tae-Ho Cha, Judson R Holt, Henry K Utomo
  • Publication number: 20150011070
    Abstract: A gate pattern is formed on a first region of a substrate. An epitaxial layer is formed on a second region of the substrate. A recess is formed in the second region of the substrate by etching the epitaxial layer and the substrate underneath. The first region is adjacent to the second region.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 8, 2015
    Inventors: Jin-Bum Kim, Kyung-Bum Koo, Taek-Soo Jeon, Tae-Ho Cha, Judson R. Holt, Henry K. Utomo
  • Patent number: 8466052
    Abstract: A method of fabricating a semiconductor device can include forming a trench in a semiconductor substrate, forming a first conductive layer on a bottom surface and side surfaces of the trench, and selectively forming a second conductive layer on the first conductive layer to be buried in the trench. The second conductive layer may be formed selectively on the first conductive layer by using an electroless plating method or using a metal organic chemical vapor deposition (MOCVD) or an atomic layer deposition (ALD) method.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: June 18, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-min Baek, Hee-sook Park, Seong-hwee Cheong, Gil-heyun Choi, Byung-hak Lee, Tae-ho Cha, Jae-hwa Park, Su-kyoung Kim
  • Patent number: 8404576
    Abstract: A gate structure includes an insulation layer on a substrate, a first conductive layer pattern on the insulation layer, a metal ohmic layer pattern on the first conductive layer pattern, a diffusion reduction layer pattern on the metal ohmic layer pattern an amorphous layer pattern on the diffusion reduction layer pattern, and a second conductive layer pattern on the amorphous layer pattern. The gate structure may have a low sheet resistance and desired thermal stability.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: March 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Ho Cha, Seong-Hwee Cheong, Gil-Heyun Choi, Byung-Hee Kim, Hee-Sook Park, Jong-Min Baek
  • Publication number: 20120034749
    Abstract: A method of manufacturing a semiconductor device can be provided by forming a gate structure on a substrate and forming a diffusion barrier layer on the gate structure and the substrate, A stress layer can be formed on the diffusion barrier layer comprising a metal nitride or a metal oxide having a concentration of nitrogen or oxygen associated therewith. The stress layer can be heated to transform the stress layer into a tensile stress layer to reduce the concentration of the nitrogen or the oxygen in the stress layer. The tensile stress layer and the diffusion barrier layer can be removed.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 9, 2012
    Inventors: Kwan-Yong LIM, Chung-Geun Koh, Hyun-Jung Lee, Tae-Ouk Kwon, Seok-Hoon Kim, Tae-Ho Cha
  • Patent number: 7989892
    Abstract: A gate structure can include a polysilicon layer, a metal layer on the polysilicon layer, a metal silicide nitride layer on the metal layer and a silicon nitride mask on the metal silicide nitride layer.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: August 2, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Ho Cha, Seong-Hwee Cheong, Jong-Min Baek, Jae-Hwa Park, Gil-Heyun Choi, Byung-Hee Kim, Byung-Hak Lee, Hee-Sook Park
  • Publication number: 20110171818
    Abstract: A method of forming a gate structure can be provided by forming a tunnel insulation layer on a substrate and forming a floating gate on the tunnel insulation layer. A dielectric layer pattern can be on the floating gate and a control gate can be formed on the dielectric layer pattern, which can be provided by forming a first conductive layer pattern on the dielectric layer pattern. A metal ohmic layer pattern can be formed on the first conductive layer pattern. A diffusion preventing layer pattern can be formed on the metal ohmic layer pattern. An amorphous layer pattern can be formed on the diffusion preventing layer pattern forming a second conductive layer pattern on the amorphous layer pattern. The floating gate can be further formed by forming an additional first conductive layer pattern on the tunnel insulation layer. An additional metal ohmic layer pattern can be formed on the additional first conductive layer pattern.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 14, 2011
    Inventors: Tae-Ho Cha, Seong-Hwee Cheong, Gil-Heyun Choi, Byung-Hee Kim, Hee-Sook Park, Jong-Min Baek
  • Patent number: 7928498
    Abstract: A gate structure includes an insulation layer on a substrate, a first conductive layer pattern on the insulation layer, a metal ohmic layer pattern on the first conductive layer pattern, a diffusion preventing layer pattern on the metal ohmic layer pattern, an amorphous layer pattern on the diffusion preventing layer pattern, and a second conductive layer pattern on the amorphous layer pattern. The gate structure may have a low sheet resistance and desired thermal stability.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: April 19, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Ho Cha, Seong-Hwee Cheong, Gil-Heyun Choi, Byung-Hee Kim, Hee-Sook Park, Jong-Min Baek
  • Patent number: 7879737
    Abstract: Disclosed are a variety of methods for increasing the relative thickness in the peripheral or edge regions of gate dielectric patterns to suppress leakage through these regions. The methods provide alternatives to conventional GPOX processes and provide the improved leakage resistance without incurring the degree of increased gate electrode resistance associated with GPOX processes. Each of the methods includes forming a first opening to expose an active area region, forming an oxidation control region on the exposed portion and then forming a second opening whereby a peripheral region free of the oxidation control region is exposed for formation of a gate dielectric layer. The resulting gate dielectric layers are characterized by a thinner central region surrounded or bounded by a thicker peripheral region.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: February 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woong-Hee Sohn, Gil-Heyun Choi, Byung-Hee Kim, Byung-Hak Lee, Tae-Ho Cha, Hee-Sook Park, Jae-Hwa Park, Geum-Jung Seong
  • Publication number: 20110003455
    Abstract: Disclosed are a variety of methods for increasing the relative thickness in the peripheral or edge regions of gate dielectric patterns to suppress leakage through these regions. The methods provide alternatives to conventional GPDX processes and provide the improved leakage resistance without incurring the degree of increased gate electrode resistance associated with GPDX processes. Each of the methods includes forming a first opening to expose an active area region, forming an oxidation control region on the exposed portion and then forming a second opening whereby a peripheral region free of the oxidation control region is exposed for formation of a gate dielectric layer. The resulting gate dielectric layers are characterized by a thinner central region surrounded or bounded by a thicker peripheral region.
    Type: Application
    Filed: May 24, 2010
    Publication date: January 6, 2011
    Inventors: Woong-Hee SOHN, Gil-Heyun CHOI, Byung-Hee KIM, Byung-Hak LEE, Tae-Ho CHA, Hee-Sook PARK, Jae-Hwa PARK, Geum-Jung SEONG
  • Patent number: 7781849
    Abstract: Provided are semiconductor devices and methods of fabricating the same, and more specifically, semiconductor devices having a W—Ni alloy thin layer that has a low resistance, and methods of fabricating the same. The semiconductor devices include the W—Ni alloy thin layer. The weight of Ni in the W—Ni alloy thin layer may be in a range from approximately 0.01 to approximately 5.0 wt % of the total weight of the W—Ni alloy thin layer.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: August 24, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-min Baek, Seong-hwee Cheong, Gil-heyun Choi, Tae-ho Cha, Hee-sook Park, Byung-hak Lee, Jae-hwa Park
  • Publication number: 20100210105
    Abstract: A method of fabricating a semiconductor device can include forming a trench in a semiconductor substrate, forming a first conductive layer on a bottom surface and side surfaces of the trench, and selectively forming a second conductive layer on the first conductive layer to be buried in the trench. The second conductive layer may be formed selectively on the first conductive layer by using an electroless plating method or using a metal organic chemical vapor deposition (MOCVD) or an atomic layer deposition (ALD) method.
    Type: Application
    Filed: February 11, 2010
    Publication date: August 19, 2010
    Inventors: Jong-min Baek, Hee-sook Park, Seong-hwee Cheong, Gil-heyun Choi, Byung-hak Lee, Tae-ho Cha, Jae-hwa Park, Su-kyoung Kim
  • Patent number: 7759263
    Abstract: Disclosed are a variety of methods for increasing the relative thickness in the peripheral or edge regions of gate dielectric patterns to suppress leakage through these regions. The methods provide alternatives to conventional GPOX processes and provide the improved leakage resistance without incurring the degree of increased gate electrode resistance associated with GPOX processes. Each of the methods includes forming a first opening to expose an active area region, forming an oxidation control region on the exposed portion and then forming a second opening whereby a peripheral region free of the oxidation control region is exposed for formation of a gate dielectric layer. The resulting gate dielectric layers are characterized by a thinner central region surrounded or bounded by a thicker peripheral region.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: July 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woong-Hee Sohn, Gil-Heyun Choi, Byung-Hee Kim, Byung-Hak Lee, Tae-Ho Cha, Hee-Sook Park, Jae-Hwa Park, Geum-Jung Seong