Patents by Inventor Tai-Hsiang Chao

Tai-Hsiang Chao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5230789
    Abstract: This invention relates to hydrocarbon conversion processes using a catalytic composite which is an amorphous solid solution of phosphorus, silicon and aluminum oxides. The composite is characterized in that it contains from about 5 to about 50 weight percent Al.sub.2 O.sub.3, from about 10 to about 90 weight percent SiO.sub.2 and from about 5 to about 40 weight percent P.sub.2 O.sub.5 and has pores whose average diameters range from about 30 to about 200 Angstroms. The composite is further characterized in that it has a pore volume of about 0.35 to about 0.75 cc/g and a surface area of about 200 to about 420 m.sup.2 /g. The composite may be prepared by forming a mixture of sols of alumina and silica and a phosphorus compound, gelling the mixture to form particles and then calcining the particles to provide the amorphous solid solution. The amorphous composite may be used either as is or with additional catalytic metals (selected from the metals of Group VIB and VIII of the Periodic Table) dispersed thereon.
    Type: Grant
    Filed: June 23, 1992
    Date of Patent: July 27, 1993
    Assignee: UOP
    Inventors: Tai-Hsiang Chao, Michael W. Schoonover
  • Patent number: 5139989
    Abstract: This invention relates to a catalytic composite which is an amorphous solid solution of phosphorus, silicon and aluminum oxides. The composite is characterized in that it contains from about 5 to about 50 weight percent Al.sub.2 O.sub.3, from about 10 to about 90 weight percent SiO.sub.2 and from about 5 to about 40 weight percent P.sub.2 O.sub.5 and has pores whose average diameters range from about 30 to about 200 Angstroms. The composite is further characterized in that it has a pore volume of about 0.35 to about 0.75 cc/g and a surface area of about 200 to about 420 m.sup.2 /g. The composite may be prepared by forming a mixture of sols of alumina and silica and a phosphorus compound, gelling the mixture to form particles and then calcining the particles to provide the amorphous solid solution.
    Type: Grant
    Filed: August 28, 1991
    Date of Patent: August 18, 1992
    Assignee: UOP
    Inventors: Tai-Hsiang Chao, Michael W. Schoonover
  • Patent number: 5128300
    Abstract: A novel extruded catalyst and process use thereof is disclosed. The catalyst comprises a refractory inorganic oxide and halogen, platinum-group metal, and Group IVA(14) metal components, wherein the Group IVA(14) metal is homogeneously dispersed within a bed of catalyst particles relative to catalysts of the prior art. Utilization of this catalyst in the reforming of hydrocarbons results in significantly improved selectivity to the desired gasoline product.
    Type: Grant
    Filed: September 25, 1991
    Date of Patent: July 7, 1992
    Assignee: UOP
    Inventors: Tai-Hsiang Chao, William M. Targos, Mark D. Moser
  • Patent number: 5081086
    Abstract: A novel solid phosphoric acid catalyst composition is disclosed. The composite comprises solid phosphoric acid and a refractory oxide binder. The composite is characterized in that 25.0 volume percent or less of the total catalyst pore volume consists of pores having a diameter of 10,000 .ANG. or greater. An improvement in catalyst activity and stability is observed when such a catalyst is utilized in a hydrocarbon conversion process.
    Type: Grant
    Filed: December 18, 1989
    Date of Patent: January 14, 1992
    Assignee: UOP
    Inventors: Fiona P. Wilcher, Tai-Hsiang Chao
  • Patent number: 5059737
    Abstract: A hydrocarbon conversion process which utilizes a solid phosphoric acid catalyst having a total X-ray intensity of at least 40 percent relative to alpha-alumina. The solid phosphoric acid catalyst is produced by crystallizing an amorphous mixture of an acid oxide of phosphorus and a siliceous material at a temperature of from 350.degree. to 450.degree. C. and in the presence of from 10 to 50 mole percent water vapor based upon the total vapor rate to the crystallizing means. Embodiments of the new hydrocarbon conversion process include alkylation, oligomerization, and hydration, of hydrocarbons and oxygenated hydrocarbons.
    Type: Grant
    Filed: July 2, 1990
    Date of Patent: October 22, 1991
    Assignee: UOP
    Inventors: Tai-Hsiang Chao, Fiona P. Wilcher, Mark R. Ford, Andrzej Z. Ringwelski
  • Patent number: 4964975
    Abstract: A novel extruded catalyst and process use thereof is disclosed. The catalyst comprises a refractory inorganic oxide and halogen, platinum-group metal, and Group IVA(14) metal components, wherein the Group IVA(14) metal is homogeneously dispersed within a bed of catalyst particles relative to catalysts of the prior art. Utilization of this catalyst in the reforming of hydrocarbons results in significantly improved selectivity to the desired gasoline product.
    Type: Grant
    Filed: June 30, 1989
    Date of Patent: October 23, 1990
    Assignee: UOP
    Inventors: Tai-Hsiang Chao, William M. Targos, Mark D. Moser
  • Patent number: 4956329
    Abstract: This invention relates to a catalyst support structure, methods of preparing the support structure and a process for using the support structure. The catalyst support structure is composed of a substantially polycrystalline cordierite phase having a chemical composition by weight of 6-15% MgO, 33-40% Al.sub.2 O.sub.3 and 45-56% SiO.sub.2 and characterized in that it has a surface area of at least 2.7 m.sup.2 /g and preferably 8 m.sup.2 /g, a compressive strength of at least 31 MPa, a thermal expansion coefficient smaller than 5.2.times.10.sup.-6 m/m/.degree.C. and a porosity of at least 20%.
    Type: Grant
    Filed: November 28, 1988
    Date of Patent: September 11, 1990
    Assignee: Allied-Signal Inc.
    Inventors: Tai-Hsiang Chao, Michael W. Schoonover, Gerald T. Stranford
  • Patent number: 4946815
    Abstract: A solid phosphoric acid catalyst having a total X-ray intensity of at least 30 percent relative to alpha-alumina. The solid phosphoric acid catalyst is produced by crystallizing an amorphous mixture of an acid oxide of phosphorus and a siliceous material at a temperature of from 250.degree. to 450.degree. C. and in the presence of from 3 to 50 mole percent water vapor based upon the total vapor rate to the crystallizing means.
    Type: Grant
    Filed: December 23, 1988
    Date of Patent: August 7, 1990
    Assignee: UOP
    Inventors: Tai-Hsiang Chao, Fiona P. Wilcher, Mark R. Ford, Andrzej Z. Ringwelski
  • Patent number: 4912279
    Abstract: A novel solid phosphoric acid catalyst composition, and process for using the catalyst is disclosed. The composite comprises solid phosphoric acid and a refractory oxide binder. The composite is characterized in that 25.0 volume percent or less of the total catalyst pore volume consists of pores having a diameter of 10,000 .ANG. or greater. An improvement in catalyst stability is observed when such a catalyst is utilized in a hydrocarbon conversion process.
    Type: Grant
    Filed: December 29, 1988
    Date of Patent: March 27, 1990
    Assignee: UOP
    Inventors: Fiona P. Wilcher, Tai-Hsiang Chao
  • Patent number: 4884960
    Abstract: A honeycombed structure is extruded and wash coat applied to the interior channels of the structure before the honeycomb structure is separated from the die in which it is formed. This method produces the honeycombed structure using a die that includes a die body having an inlet and an outlet side, a plurality of parallel pins defined by the body that correspond to the shape of the channels in the honeycombed structure, and a discharge zone that communicates directly with the outlet side of the die and is defined by the open area between the pins. The extrudable material enters the discharge zone from a series of feed passages defined by the pins and a plurality of webs that interconnect the pins. Each pin has an interior duct with an opening at the end of each pin. A series of internal passages in the die body receive fluid from one or more ports on the periphery of the die and distribute the fluid to the ducts.
    Type: Grant
    Filed: May 6, 1988
    Date of Patent: December 5, 1989
    Assignee: Allied-Signal Inc.
    Inventor: Tai-Hsiang Chao
  • Patent number: 4846657
    Abstract: A die for forming honeycomb structures has an arrangement that facilitates fabrication and the support of channel forming pins across the surface of the die by the use of multiple die sections. The die is used for forming multi-channeled honeycomb structures from extrudable materials. The die has a first die body that has an inlet face and outlet face and integrally formed channel forming pins that extend past the outlet face of the die. A set of integrally formed links interconnect the channeled pins and support the channeled pins from the die body. Together the channel forming pins and links define a set of cavity for passing extrudable material through the die body. The die includes at least one additional die body, which is at least partially superimposed above the inlet face of the first die body.
    Type: Grant
    Filed: May 2, 1988
    Date of Patent: July 11, 1989
    Assignee: Allied-Signal Inc.
    Inventor: Tai-Hsiang Chao
  • Patent number: 4812276
    Abstract: A method for forming honeycomb structures by stepwise formation of channel walls reduces the pressure loading imposed by the extrudable material on a die that uses this method, facilitates the formation of well knitted channel walls, and requires only a minimum amount of lateral flow in the discharge zone to perform final interconnections between channel walls that have been substantially formed upstream of the discharge zone. The method presses extrudable material in substantially axial flow through a fist partitioning zone and subdivides the material into a series of flow segments having on their outer surfaces a portion of the channel wall surfaces formed. The extrudable material passes from the first partitioning zone in substantially axial flow while at least a portion of the channel walls formed in the first partitioning zone are maintained on the surface of the segments.
    Type: Grant
    Filed: April 29, 1988
    Date of Patent: March 14, 1989
    Assignee: Allied-Signal Inc.
    Inventor: Tai-Hsiang Chao
  • Patent number: 4795845
    Abstract: A process for catalytic dehydrocyclodimerization and regeneration of the catalyst. C.sub.2 to C.sub.5 aliphatic hydrocarbons are reacted to produce aromatics, using a catalyst of a composition especially adapted to minimize deposition of coke on the catalyst. The catalyst is comprised of alumina which contains phosphorus, gallium, and a crystalline aluminosilicate having a silica to alumina ratio of at least 12. The use of this catalyst has resulted in a five-fold reduction in the rate of coke deposition, compared to a conventional dehydrocyclodimerization catalyst. However, the activity of this catalyst once it becomes deactivated is only recovered by burning the coke accumulated upon the deactivated catalyst at catalyst regeneration conditions in the presence of an oxygen-containing gas.
    Type: Grant
    Filed: December 28, 1987
    Date of Patent: January 3, 1989
    Assignee: UOP Inc.
    Inventors: David C. Martindale, Joseph A. Kocal, Tai-Hsiang Chao
  • Patent number: 4747986
    Abstract: An extrusion die for producing multichanneled structures from an extrudable material. The die is composed of a series of pins that correspond to the shape of the channels in the structure. At one end of the pins, the area between the pins is open to define a discharge zone having the shape of the structure. At their opposite ends, the pins are connected about adjacent corners by a series of webs. Slots bordered by the pins and the webs define a series of feed passages that communicate with the discharge zone at areas of reduced width between adjacent pins.
    Type: Grant
    Filed: December 24, 1986
    Date of Patent: May 31, 1988
    Assignee: Allied-Signal Inc.
    Inventor: Tai-Hsiang Chao
  • Patent number: 4743191
    Abstract: A multipiece die for extruding honeycomb structures that facilitates a variation of geometries in the formation of honeycomb structures by reducing the amount of machining necessary to change die configurations for different honeycomb arrangements. The die has at least two sets of channel forming pins which are supported from separate die bodies. The channel forming pins when brought together with the separate die bodies define a series of discharge slots by which the extrudable structure is ejected from the die. A plurality of cavities communicate extrudable material from inlet and outlet sides of each die body. The cavities in downstream die bodies, downstream being taken with respect to the flow of extrudable material, are made with sufficient size to allow pins depending from upstream die bodies through the cavities while still allowing enough open area to provide a feed passage for the extrudable material.
    Type: Grant
    Filed: April 2, 1987
    Date of Patent: May 10, 1988
    Assignee: Allied-Signal Inc.
    Inventor: Tai-Hsiang Chao
  • Patent number: 4727209
    Abstract: Hydrocarbon conversion processes including hydrocracking and hydrotreating are performed utilizing a novel phosphorus-modified alumina composite comprising a hydrogel having a molar ratio on an elemental basis of phosphorus to aluminum of from 1:1 to 1:100 together with a surface area of about 140 to 450 m.sup.2 /gm. The composite is prepared by admixing an alumina hydrosol with a phosphorus-containing compound to form a phosphorus-modified sol and gelling said admixture.
    Type: Grant
    Filed: December 12, 1986
    Date of Patent: February 23, 1988
    Assignee: UOP Inc.
    Inventor: Tai-Hsiang Chao
  • Patent number: 4724271
    Abstract: A process for catalytic dehydrocyclodimerization and regeneration of the catalyst. C.sub.2 to C.sub.5 aliphatic hydrocarbons are reacted to produce aromatics, using a water-sensitive catalyst of a composition especially adapted to minimize deposition of coke on the catalyst. The catalyst is comprised of alumina which contains phosphorus, gallium, and a crystalline aluminosilicate having a silica to alumina ratio of at least 12. The use of this catalyst has resulted in a five-fold reduction in the rate of coke deposition, compared to a conventional dehydrocyclodimerization catalyst. However, the activity of this catalyst is significantly reduced by exposure to water at the temperatures normally used in removing the coke, which is accomplished by burning the coke in a combustion zone in the presence of oxygen, producing carbon dioxide and water. At least a portion of the gas leaving the combustion zone catalyst bed is combined with air and recycled back to the combustion zone.
    Type: Grant
    Filed: March 31, 1987
    Date of Patent: February 9, 1988
    Assignee: UOP Inc.
    Inventors: David C. Martindale, Joseph A. Kocal, Tai-Hsiang Chao
  • Patent number: 4717781
    Abstract: Unsaturated hydrocarbons may be prepared by subjecting a dehydrogenatable hydrocarbon to dehydrogenation in the presence of a dehydrogenation catalyst. The effluent stream from this step, comprising unconverted hydrocarbons, dehydrogenated hydrocarbons, hydrogen and steam, may then be passed to a selective oxidation step in which the hydrogen is selectively oxidized in the presence of an oxygen-containing gas to the substantial exclusion of the oxidation of the hydrocarbons. The oxidation catalyst which is employed will comprise a Group VIII noble metal, a Group IVA metal and a Group IA or IIA metal composited on a metal oxide support. The metal oxide support such as alumina will possess a particular configuration having one or more open channels such as a tubular or cartwheel particle having an outside to inside diameter ratio of the channels ranging from 1.
    Type: Grant
    Filed: March 23, 1987
    Date of Patent: January 5, 1988
    Assignee: UOP Inc.
    Inventors: Tamotsu Imai, Jeffery C. Bricker, Tai-Hsiang Chao, Maureen L. Bricker
  • Patent number: 4695666
    Abstract: An improved process for the isomerization of non-equilibrium C.sub.8 aromatics is presented which utilizes a novel catalytic composition. This catalyst comprises phosphorus-containing alumina, a gallium component, and crystalline aluminosilicate zeolite having a silica to alumina ratio of at least 12. The isomerization process has a particular utility for the conversion of ethylbenzene without the deleterious loss of xylene.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: September 22, 1987
    Assignee: UOP Inc.
    Inventors: Tai-Hsiang Chao, J. W. Adriaan Sachtler
  • Patent number: 4654455
    Abstract: Superior tolerance to catalyst coking is obtained with a catalytic composite comprising a gallium component and a crystalline aluminosilicate incorporated with a phorphorus containing alumina. A five-fold reduction in the coke content of the spent catalyst of the instant invention is observed which is directly attributable to the phosphorus containing alumina. A novel method of preparing this catalyst is presented, along with a novel process for the dehydrocyclodimerization of C.sub.2 -C.sub.5 aliphatic hydrocarbons.
    Type: Grant
    Filed: June 9, 1986
    Date of Patent: March 31, 1987
    Assignee: UOP Inc.
    Inventor: Tai-Hsiang Chao