Patents by Inventor Taiki Imahashi

Taiki Imahashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230105695
    Abstract: By a method including at least a spraying/mixing step of: mixing a precursor compound of a positive electrode active material with a lithium compound to prepare a mixture; and simultaneously spraying a spraying agent containing at least one element onto the mixture, there can be produced a positive electrode active material for non-aqueous electrolyte secondary batteries, which does not adversely affect battery properties of non-aqueous electrolyte secondary batteries, without reducing production efficiency.
    Type: Application
    Filed: November 18, 2022
    Publication date: April 6, 2023
    Inventors: Masataka OYAMA, Hiroaki MASUKUNI, Taiki IMAHASHI, Daisuke MORITA, Takahiro NAKANISHI, Kazumichi KOGA
  • Patent number: 9764962
    Abstract: The present invention provides lithium composite compound particles having good high-temperature storage property and excellent cycle characteristics as an active substance for a non-aqueous electrolyte secondary battery, and a secondary battery using the lithium composite compound particles. The Li—Ni composite oxide particles for a non-aqueous electrolyte secondary battery according to the present invention have a BET specific surface area of 0.05 to 0.8 m2/g; an atomic ratio (Ma/Ni) of a concentration of an amphoteric metal to a concentration of Ni on an outermost surface of the respective Li—Ni composite oxide particles is 2 to 6; and the concentration of the amphoteric metal on the outermost surface of the respective Li—Ni composite oxide particles is higher than a concentration of the amphoteric metal at a position spaced by 50 nm from the outermost surface toward a center of the respective Li—Ni composite oxide particles.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: September 19, 2017
    Assignee: TODA KOGYO CORPORATION
    Inventors: Taiki Imahashi, Hiroyasu Watanabe, Kazuhiko Kikuya, Hideaki Sadamura
  • Patent number: 9455444
    Abstract: The present invention relates to lithium composite compound particles having a composition represented by the formula: Li1+xNi1?y?zCoyMzO2 (M=B or Al), wherein the lithium composite compound particles have an ionic strength ratio A (LiO?/NiO2?) of not more than 0.3 and an ionic strength ratio B (Li3CO3+/Ni+) of not more than 20 as measured on a surface of the respective lithium composite compound particles using a time-of-flight secondary ion mass spectrometer. The lithium composite compound particles of the present invention can be used as a positive electrode active substance of a secondary battery which has good cycle characteristics and an excellent high-temperature storage property.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: September 27, 2016
    Assignee: TODA KOGYO CORPORATION
    Inventors: Hiroyasu Watanabe, Taiki Imahashi, Kazuhiko Kikuya, Nobuyuki Tagami, Hideaki Sadamura
  • Patent number: 8986571
    Abstract: The present invention aims to provide lithium composite compound particles which can exhibit good cycle characteristics and an excellent high-temperature storage property when used as a positive electrode active substance of a secondary battery, and a secondary battery using the lithium composite compound particles. The present invention relates to lithium composite compound particles having a composition represented by the compositional formula: Li1+xNi1?y?z?aCoyMnzMaO2, in which the lithium composite compound particles have an ionic strength ratio A (LiO?/NiO2?) of not more than 0.5 and an ionic strength ratio B (Li3CO3+/Ni+) of not more than 20 as measured on a surface of the respective lithium composite compound particles using a time-of-flight secondary ion mass spectrometer.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: March 24, 2015
    Assignee: Toda Kogyo Corporation
    Inventors: Hiroyasu Watanabe, Kazutoshi Ishizaki, Taiki Imahashi, Satoshi Nakamura, Osamu Sasaki
  • Publication number: 20140087262
    Abstract: The present invention provides lithium composite compound particles having good high-temperature storage property and excellent cycle characteristics as an active substance for a non-aqueous electrolyte secondary battery, and a secondary battery using the lithium composite compound particles. The Li—Ni composite oxide particles for a non-aqueous electrolyte secondary battery according to the present invention have a BET specific surface area of 0.05 to 0.8 m2/g; an atomic ratio (Ma/Ni) of a concentration of an amphoteric metal to a concentration of Ni on an outermost surface of the respective Li—Ni composite oxide particles is 2 to 6; and the concentration of the amphoteric metal on the outermost surface of the respective Li—Ni composite oxide particles is higher than a concentration of the amphoteric metal at a position spaced by 50 nm from the outermost surface toward a center of the respective Li—Ni composite oxide particles.
    Type: Application
    Filed: April 12, 2012
    Publication date: March 27, 2014
    Applicant: TODA KOGYO CORPORATION
    Inventors: Taiki Imahashi, Hiroyasu Watanabe, Kazuhiko Kikuya, Hideaki Sadamura
  • Publication number: 20130330626
    Abstract: The present invention relates to Li—Ni-based composite oxide particles comprising Mn, and Co and/or Al, wherein Co and Al are uniformly dispersed within the particles, and Mn is present with a gradient of its concentration in a radial direction of the respective particles such that a concentration of Mn on a surface of the respective particles is higher than that at a central portion thereof. The Li—Ni-based composite oxide particles can be produced by allowing an oxide and a hydroxide comprising Mn to mechanically adhere to Li—Ni-based oxide comprising Co and/or Al; and then heat-treating the obtained material at a temperature of not lower than 400° C. and not higher than 1,000° C. The Li—Ni-based composite oxide particles of the present invention are improved in thermal stability and alkalinity.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 12, 2013
    Applicant: TODA KOGYO CORPORATION
    Inventors: Akihisa KAJIYAMA, Kazuhiko KIKUYA, Teruaki SANTOKI, Osamu SASAKI, Satoshi NAKAMURA, Taiki IMAHASHI, Hideaki SADAMURA
  • Patent number: 8546018
    Abstract: The present invention relates to Li—Ni-based composite oxide particles comprising Mn, and Co and/or Al, wherein Co and Al are uniformly dispersed within the particles, and Mn is present with a gradient of its concentration in a radial direction of the respective particles such that a concentration of Mn on a surface of the respective particles is higher than that at a central portion thereof. The Li—Ni-based composite oxide particles can be produced by allowing an oxide and a hydroxide comprising Mn to mechanically adhere to Li—Ni-based oxide comprising Co and/or Al; and then heat-treating the obtained material at a temperature of not lower than 400° C. and not higher than 1,000° C. The Li—Ni-based composite oxide particles of the present invention are improved in thermal stability and alkalinity.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: October 1, 2013
    Assignee: Toda Kogyo Corporation
    Inventors: Akihisa Kajiyama, Kazuhiko Kikuya, Teruaki Santoki, Osamu Sasaki, Satoshi Nakamura, Taiki Imahashi, Hideaki Sadamura
  • Publication number: 20130119307
    Abstract: The present invention aims to provide lithium composite compound particles which can exhibit good cycle characteristics and an excellent high-temperature storage property when used as a positive electrode active substance of a secondary battery, and a secondary battery using the lithium composite compound particles. The present invention relates to lithium composite compound particles having a composition represented by the compositional formula: Li1+xNi1?y?z?aCoyMnzMaO2, in which the lithium composite compound particles have an ionic strength ratio A (LiO?/NiO2?) of not more than 0.5 and an ionic strength ratio B (Li3CO3+/Ni+) of not more than 20 as measured on a surface of the respective lithium composite compound particles using a time-of-flight secondary ion mass spectrometer.
    Type: Application
    Filed: June 8, 2011
    Publication date: May 16, 2013
    Applicant: TODA KOGYO CORPORATION
    Inventors: Hiroyasu Watanabe, Kazutoshi Ishizaki, Taiki Imahashi, Satoshi Nakamura, Osamu Sasaki
  • Publication number: 20110281168
    Abstract: The present invention relates to lithium composite compound particles having a composition represented by the formula: Li1+xNi1-y-zCoyMzO2 (M=B or Al), wherein the lithium composite compound particles have an ionic strength ratio A (LiO?/NiO2?) of not more than 0.3 and an ionic strength ratio B (Li3CO3+/Ni+) of not more than 20 as measured on a surface of the respective lithium composite compound particles using a time-of-flight secondary ion mass spectrometer. The lithium composite compound particles of the present invention can be used as a positive electrode active substance of a secondary battery which has good cycle characteristics and an excellent high-temperature storage property.
    Type: Application
    Filed: December 3, 2009
    Publication date: November 17, 2011
    Applicant: TODA KOGYO CORPORATION
    Inventors: Hiroyasu Watanabe, Taiki Imahashi, Kazuhiko Kikuya, Nobuyuki Tagami, Hideaki Sadamura
  • Publication number: 20100316910
    Abstract: The present invention relates to Li—Ni-based composite oxide particles comprising Mn, and Co and/or Al, wherein Co and Al are uniformly dispersed within the particles, and Mn is present with a gradient of its concentration in a radial direction of the respective particles such that a concentration of Mn on a surface of the respective particles is higher than that at a central portion thereof. The Li—Ni-based composite oxide particles can be produced by allowing an oxide and a hydroxide comprising Mn to mechanically adhere to Li—Ni-based oxide comprising Co and/or Al; and then heat-treating the obtained material at a temperature of not lower than 400° C. and not higher than 1,000° C. The Li—Ni-based composite oxide particles of the present invention are improved in thermal stability and alkalinity.
    Type: Application
    Filed: November 11, 2008
    Publication date: December 16, 2010
    Inventors: Akihisa Kajiyama, Kazuhiko Kikuya, Teruaki Santoki, Osamu Sasaki, Satoshi Nakamura, Taiki Imahashi, Hideaki Sadamura