Patents by Inventor Taishi Fukazawa

Taishi Fukazawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090148739
    Abstract: A direct methanol fuel cell includes a cathode catalyst layer; an electrolyte membrane; an anode catalyst layer; a first fuel control layer that is water-repellent and conductive and that has pores; a second fuel control layer that is water-repellent and conductive and that has larger pores than the those of the first fuel control layer; a third fuel control layer that is water-repellent and conductive and that has smaller porous than those of the first fuel control layer and those of the second fuel control layer; and an anode GDL layer that is water-repellent and conductive, wherein the membrane and the layers above are arranged in the above order.
    Type: Application
    Filed: March 24, 2008
    Publication date: June 11, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshihiro Akasaka, Masato Akita, Ryosuke Yagi, Hiroyasu Sumino, Kazuhiro Yasuda, Taishi Fukazawa
  • Publication number: 20090082198
    Abstract: A methanol oxidation catalyst is provided, which includes nanoparticles having a composition represented by the following formula (1): PtxRuyMozTu ??(1) In the formula (1), the T-element is at least one selected from the group consisting of W and V, x is 20 to 80 at. %, y is 10 to 60 at. %, z is 1 to 30 at. % and u is 1 to 30 at. %. The area of the peak derived from oxygen bond of T-element is 80% or less of the area of the peak derived from metal bond of T-element in a spectrum measured by an X-ray photoelectron spectral method.
    Type: Application
    Filed: September 28, 2007
    Publication date: March 26, 2009
    Inventors: Wu Mei, Taishi Fukazawa, Itsuko Mizutani, Tsuyoshi Kobayashi, Yoshihiko Nakano, Mina Farag, Yi-Qun Li, Shinji Aoki
  • Publication number: 20090081391
    Abstract: A methanol oxidation catalyst is provided, which includes nanoparticles having a composition represented by the following formula 1: PtxRuyTzQu ??formula 1 In the formula 1, the T-element is at least one selected from a group consisting of Mo, W and V and the Q-element is at least one selected from a group consisting of Nb, Cr, Zr and Ti, x is 40 to 90 at. %, y is 0 to 9.9 at. %, z is 3 to 70 at. % and u is 0.5 to 40 at. %. The area of the peak derived from oxygen bond of T-element is 80% or less of the area of the peak derived from metal bond of T-element in a spectrum measured by an X-ray photoelectron spectral method.
    Type: Application
    Filed: September 28, 2007
    Publication date: March 26, 2009
    Inventors: Wu MEI, Taishi FUKAZAWA, Itsuko MIZUTANI, Tsuyoshi KOBAYASHI, Yoshihiko NAKANO, Mina FARAG, Yi-Qun LI, Shinji AOKI
  • Publication number: 20090061276
    Abstract: This invention provides an anode for a fuel cell which can realize stable output for a long period of time, and a fuel cell using the anode for a fuel cell. The anode for a fuel cell comprises an electrode catalyst layer, the electrode catalyst layer comprising a supported catalyst comprising an electroconductive carrier material and catalyst fine particles supported on the electroconductive carrier material, a proton conductive inorganic oxide, and a proton conductive organic polymer binder, the weight ratio between the supported catalyst (C) and the proton conductive inorganic oxide (SA), WSA/WC, being 0.06 to 0.38, the weight ratio between the proton conductive inorganic oxide (SA) and the proton conductive organic polymer binder (P), WP/WSA, being 0.125 to 0.5.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 5, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Jun TAMURA, Yoshihiko NAKANO, Wu MEI, Taishi FUKAZAWA
  • Publication number: 20090050484
    Abstract: This invention provides a process for producing a membrane electrode assembly which has high and stable catalytic activity, and suppressed deterioration in catalytic activity during operation, and can prevent a deterioration in performance attributable to a structural factor of the membrane electrode assembly. The process comprises the step of, after the washing/removing step, drying the catalyst electrode in an atmosphere having a lower oxygen partial pressure than the air. The anode/cathode is a covered catalyst electrode having a structure formed by supporting/depositing a catalytically active material composed mainly of platinum/ruthenium subjected to the potential holding step, the washing/removing step, and the drying step, on a porous electroconductive carrier to cover at least a part of the porous electroconductive carrier with the ion conductive material.
    Type: Application
    Filed: March 17, 2008
    Publication date: February 26, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masaaki YAMAMOTO, Wu Mei, Tsuyoshi Kobayashi, Taishi Fukazawa, Itsuko Mizutani, Yoshihiko Nakano
  • Publication number: 20090029219
    Abstract: This invention provides a highly active and stable catalyst, which is suitable for use in fuel cells while suppressing the amount of expensive noble metals used, i.e., platinum (Pt) and ruthenium (Ru), and a process for producing the catalyst, and a membrane electrode assembly and fuel cell using the catalyst. The catalyst comprises: an electro conductive support; and catalyst particles supported on the electro conductive support and having a composition represented by formula (1) PtuRuxMgyTz ??(1) wherein u is 30 to 60 atm %, x is 20 to 50 atm %, y is 0.5 to 20 atm %, and z is 0.
    Type: Application
    Filed: May 15, 2008
    Publication date: January 29, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Taishi FUKAZAWA, Wu MEI, Tsuyoshi KOBAYASHI, Itsuko MIZUTANI, Masaaki YAMAMOTO, Yoshihiko NAKANO
  • Publication number: 20080241639
    Abstract: There is provided a catalyst for a fuel cell, which simultaneously realizes excellent catalytic activity and catalytic stability. The catalyst for a fuel cell comprises a fine particle of a metal represented by formula: PtxRuySizT1u wherein T1 represents at least one element selected from the group consisting of nickel (Ni), tungsten (W), vanadium (V), and molybdenum (Mo); x=30 to 90 atomic %; y=0 to 50 atomic %; z=0.5 to 20 atomic %; and u=0.5 to 40 atomic %, or comprises a fine particle of a metal represented by formula: PtxRuySizT2u wherein T2 represents at least one element selected from the group consisting of hafnium (Hf), tin (Sn), zirconium (Zr), niobium (Nb), titanium (Ti), tantalum (Ta), chromium (Cr), and aluminum (Al); x=30 to 90 atomic %; y=0 to 50 atomic %; z=0.5 to 20 atomic %; and u=0.5 to 40 atomic %.
    Type: Application
    Filed: March 17, 2008
    Publication date: October 2, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Wu MEI, Taishi Fukazawa, Takahiro Sato, Itsuko Mizutani, Yoshihiko Nakano
  • Publication number: 20080233465
    Abstract: A catalyst is provided and includes fine catalyst particles of a composition represented by formula (1): PtuRuxTayTz, in which T is at least one element selected from the group consisting of Hf, W, Ni, and V; u, x, y, and z are 10 to 98.9 atm %, 0.1 to 50 atm %, 0.5 to 35 atm %, and 0.5 to 35 atm %, respectively, or formula (2): PtuRuxTayTz, in which T is at least one element selected from the group consisting of Ct, Mo, Nb, Zr, and T; u, x, y, and z are 40 to 70 atm %, 0.1 to 50 atm %, 0.5 to 15 atm %, and 0.
    Type: Application
    Filed: March 18, 2008
    Publication date: September 25, 2008
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Itsuko Mizutani, Wu Mei, Taishi Fukazawa, Takahiro Sato, Yoshihiko Nakano
  • Publication number: 20080230171
    Abstract: A method for producing a catalyst-layer-supporting substrate includes a lamination step of forming a laminate of metal catalyst layers and mixture layers on a substrate by repeating a first step and a second step plural times alternatively; and an acid treatment step of subjecting the laminate to an acid treatment, wherein the first step is a step of sputtering or depositing the metal catalyst layer that comprises a catalyst, and the second step is a step of sputtering or depositing the mixture layer of carbon and metal, the metal of the mixture layer including at least one element M selected from the group consisting of Sn, Al, Cu and Zn.
    Type: Application
    Filed: March 19, 2008
    Publication date: September 25, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Wu MEI, Taishi Fukazawa, Takahiro Sato, Yoshihiko Nakano
  • Publication number: 20070254806
    Abstract: A catalyst includes a conductive carrier and catalyst particles. The catalyst particles are supported on the conductive carrier and have a composition represented by formula 1, below. An area of a peak derived from a metal bond of a T-element is 15% or more of an area of a peak derived from an oxygen bond of the T-element in a spectrum obtained by X-ray photoelectron spectroscopic method. PtxRuyTz ??(1) where the T-element is at least one element selected from the group consisting of V, Nb and Hf, x is 30 to 60 at. %, y is 20 to 50 at. % and z is 5 to 50 at. %.
    Type: Application
    Filed: April 19, 2007
    Publication date: November 1, 2007
    Inventors: Wu Mei, Taishi Fukazawa, Takahiro Sato, Itsuko Mizutani, Tsuyoshi Kobayashi, Yoshihiko Nakano
  • Publication number: 20070087258
    Abstract: Catalysts contain noble metal-containing particles that has a composition except oxygen represented by a formula PtXRuYAZSnS and exhibits a mean particle diameter of from 0.5 nm to 10 nm, both inclusively. A is at least one element selected from a group consisting of Rh, Au, Pd, Ir and Os, and X, Y, Z and S are atomic ratios satisfying relations 30?X?70, 30?Y?70, 0?Z?40, 0.5?S?8 and X+Y+Z+S=100.
    Type: Application
    Filed: September 25, 2006
    Publication date: April 19, 2007
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Wu MEI, Taishi Fukazawa, Takahiro Sato, Yoshihiko Nakano
  • Publication number: 20060210864
    Abstract: Disclosed is a catalyst, including a catalyst particle containing at least one component selected from the group consisting of gold, platinum and an gold alloy, the gold alloy containing gold and at least one element selected from transition metal elements of the fourth period, fifth period and sixth period of the Periodic Table, and a catalyst carrier carrying the catalyst particle and containing a perovskite type oxide represented by general formula (1) given below: A(1-x)BxTiOy??(1) where the element A is at least one element selected from the group consisting of Ca, Sr and Ba, the element B is at least one element selected from the group consisting of La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu, the molar ratio x satisfies 0<x<1, and the molar ratio y satisfies 2.7?y?3.
    Type: Application
    Filed: March 14, 2006
    Publication date: September 21, 2006
    Inventors: Tomoko Eguchi, Yoshihiko Nakano, Wu Mei, Taishi Fukazawa