Patents by Inventor Takaaki Furuya

Takaaki Furuya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11313797
    Abstract: Sticking of core layer is suppressed, and deterioration of sensitivity of a sensor is prevented. An optical waveguide (10) includes a substrate (15), a core layer (11), a support, and a protrusion (18). The core layer (11) can transmit light. The support connects at least a portion of the substrate (15) and a portion of the core layer (11) together. The support supports the core layer (11). The protrusion (18) is arranged at a position different from a position of the support in a space between the substrate (15) and the core layer (11). The protrusion (18) has a maximum height at a position deviated from a central position cp of the core layer (11) in a width direction. The protrusion (18) protrudes toward the core layer (11) from the substrate (15).
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: April 26, 2022
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Tatsushi Yagi, Takaaki Furuya, Toshiro Sakamoto
  • Publication number: 20220091025
    Abstract: An optical chemical analysis apparatus (14) includes an optical waveguide (15) and a light source (17). The optical waveguide (15) has a core layer (12) that includes a light propagator (10), through which light can propagate in an extension direction, and a diffraction grating (first diffraction grating (11)) that connects optically to the light propagator (10). The light source (17) is configured to inject the light into the diffraction grating by emitting incoherent light. The diffraction grating further includes a light intake region for introduction of light from the light source, and the light source includes at least one light emitting point at a position such that the difference between the shortest optical distance Lab to the light intake region and the longest optical distance Lac to the light intake region is less than half of the wavelength, in a vacuum, of the light.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 24, 2022
    Applicant: Asahi Kasei Microdevices Corporation
    Inventors: Takaaki FURUYA, Toshiro SAKAMOTO
  • Patent number: 11280729
    Abstract: An optical density measuring apparatus for measuring density of a gas or a liquid to be measured includes a light source capable of irradiating light into a core layer, a detector capable of receiving light propagated through the core layer, and an optical waveguide that includes a substrate and the core layer. The core layer includes a light propagation unit and a first diffraction grating unit that receives light from the light source and guides the light to the light propagation unit, which includes a propagation channel capable of propagating light in an extending direction of the light propagation unit. The first diffraction grating unit is disposed near to and facing a light-emitting surface of the light source. The first diffraction grating unit includes first diffraction gratings, at least two of which receive light emitted from the same light-emitting surface of the light source.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: March 22, 2022
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Toshiro Sakamoto, Takaaki Furuya
  • Publication number: 20220003596
    Abstract: An optical concentration measurement device includes an LED light source, alight receiving unit having a rectangular light receiving surface and outputting a detection signal representing intensity of received light, and light guiding units guiding light emitted by the LED light source to the light receiving unit, wherein a shape on the rectangular light receiving surface of light radiated on the light receiving surface is rectangular, the optical concentration measurement device measures concentration of an object to be measured existing in a light path formed by the light guiding units, based on the detection signal output from the light receiving unit, and the light guiding units guide light at a diffraction limit or greater in such a way that area of the light on the rectangular light receiving surface is ½ or less of area of the rectangular light receiving surface.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Applicant: ASAHI KASEI MICRODEVICES CORPORATION
    Inventors: Shota ISSHIKI, Takaaki FURUYA
  • Patent number: 11137282
    Abstract: An optical concentration measurement device includes an LED light source, alight receiving unit having a rectangular light receiving surface and outputting a detection signal representing intensity of received light, and light guiding units guiding light emitted by the LED light source to the light receiving unit, wherein a shape on the rectangular light receiving surface of light radiated on the light receiving surface is rectangular, the optical concentration measurement device measures concentration of an object to be measured existing in a light path formed by the light guiding units, based on the detection signal output from the light receiving unit, and the light guiding units guide light at a diffraction limit or greater in such a way that area of the light on the rectangular light receiving surface is ½ or less of area of the rectangular light receiving surface.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: October 5, 2021
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Shota Isshiki, Takaaki Furuya
  • Publication number: 20210302309
    Abstract: A gas detection apparatus 1 includes a substrate 2; a light emitting element 3 provided on a main surface of the substrate for emitting light; a light receiving element 4 provided on the main surface of the substrate 2 for receiving the light; a light guide member 5 for guiding the light emitted by the light emitting element 3 to the light receiving element; a first joint member 6; and a second joint member 7. The first joint member joins the substrate and the light guide member, limits a displacement in a direction parallel and/or orthogonal to the main surface of the substrate. The second joint member joins the substrate and the light guide member, limits a displacement of the light guide member in a direction parallel to the main surface of the substrate and/or limits a displacement within a plane orthogonal to the main surface of the substrate.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 30, 2021
    Applicant: Asahi Kasei Microdevices Corporation
    Inventors: Yuji IKEDA, Keiichiro KUWATA, Takaaki FURUYA
  • Publication number: 20210285870
    Abstract: Provided is a gas detection apparatus which suppresses occurrences of distortions of the optical path to reduce fluctuations of the gas detection sensitivity. A gas detection apparatus 1 includes a substrate 2; a light emitting element 3 disposed in a first region 21 in a main surface 20 of the substrate 2 for emitting light; a light receiving element 4 disposed in a second region 22 in the main surface 20 of the substrate 2 for receiving the light; a light guide member 5 for guiding the light emitted by the light emitting element 3 to the light receiving element 4; and a joint member 6 joining the substrate 2 and the light guide member 5. The joint member 6 serves as a rotation axis when the light guide member 5 is displaced relative to the substrate 2.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 16, 2021
    Applicant: Asahi Kasei Microdevices Corporation
    Inventors: Yuji IKEDA, Keiichiro KUWATA, Takaaki FURUYA
  • Patent number: 11054793
    Abstract: Provided is a learning processor including a base characteristic acquiring section that acquires base characteristic data indicating a characteristic of a base layer serving as a base on which a film is to be deposited by a film deposition apparatus; a film characteristic acquiring section that acquires film characteristic data indicating a characteristic of the film deposited on the base layer by the film deposition apparatus; and a first learning processing section that performs learning processing of a first model that outputs predicted film characteristic data obtained by predicting a characteristic of a film to be deposited by the film deposition apparatus based on targeted base characteristic data indicating a characteristic of a base layer serving as a target for formation of the film, using learning data that includes the base characteristic data and the film characteristic data.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: July 6, 2021
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Takaaki Furuya, Koichiro Ueno
  • Publication number: 20210181103
    Abstract: According to the present disclosure, provided is an optical densitometer for measuring a density of a gas or liquid of interest, the optical densitometer comprising: a light source capable of introducing light into a core layer; a detector capable of receiving the light that has propagated through the core layer; and an optical waveguide, the optical waveguide comprising: a substrate; and the core layer comprising a light propagation portion capable of propagating the light in an extending direction of the light propagation portion, and a diffraction grating portion, the diffraction grating portion comprising a diffraction grating region and an extension region connected to the diffraction grating region, and a first optical coupling region included in the extension region and a second optical coupling region included in the light propagation portion being optically coupled with respect to the light propagating through the core layer.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 17, 2021
    Applicant: Asahi Kasei Microdevices Corporation
    Inventors: Takaaki FURUYA, Tatsushi YAGI, Toshiro SAKAMOTO
  • Publication number: 20210131963
    Abstract: Sticking of core layer is suppressed, and deterioration of sensitivity of a sensor is prevented. An optical waveguide (10) includes a substrate (15), a core layer (11), a support, and a protrusion (18). The core layer (11) can transmit light. The support connects at least a portion of the substrate (15) and a portion of the core layer (11) together. The support supports the core layer (11). The protrusion (18) is arranged at a position different from a position of the support in a space between the substrate (15) and the core layer (11). The protrusion (18) has a maximum height at a position deviated from a central position cp of the core layer (11) in a width direction. The protrusion (18) protrudes toward the core layer (11) from the substrate (15).
    Type: Application
    Filed: January 8, 2021
    Publication date: May 6, 2021
    Applicant: Asahi Kasei Microdevices Corporation
    Inventors: Tatsushi YAGI, Takaaki FURUYA, Toshiro SAKAMOTO
  • Publication number: 20210096022
    Abstract: An optical concentration measurement device includes an LED light source, alight receiving unit having a rectangular light receiving surface and outputting a detection signal representing intensity of received light, and light guiding units guiding light emitted by the LED light source to the light receiving unit, wherein a shape on the rectangular light receiving surface of light radiated on the light receiving surface is rectangular, the optical concentration measurement device measures concentration of an object to be measured existing in a light path formed by the light guiding units, based on the detection signal output from the light receiving unit, and the light guiding units guide light at a diffraction limit or greater in such a way that area of the light on the rectangular light receiving surface is ½ or less of area of the rectangular light receiving surface.
    Type: Application
    Filed: September 28, 2020
    Publication date: April 1, 2021
    Applicant: ASAHI KASEI MICRODEVICES CORPORATION
    Inventors: Shota ISSHIKI, Takaaki FURUYA
  • Patent number: 10928318
    Abstract: Sticking of core layer is suppressed, and deterioration of sensitivity of a sensor is prevented. An optical waveguide (10) includes a substrate (15), a core layer (11), a support, and a protrusion (18). The core layer (11) can transmit light. The support connects at least a portion of the substrate (15) and a portion of the core layer (11) together. The support supports the core layer (11). The protrusion (18) is arranged at a position different from a position of the support in a space between the substrate (15) and the core layer (11). The protrusion (18) has a maximum height at a position deviated from a central position cp of the core layer (11) in a width direction. The protrusion (18) protrudes toward the core layer (11) from the substrate (15).
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: February 23, 2021
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Tatsushi Yagi, Takaaki Furuya, Toshiro Sakamoto
  • Publication number: 20200309691
    Abstract: An optical density measuring apparatus for measuring density of a gas or a liquid to be measured includes a light source capable of irradiating light into a core layer, a detector capable of receiving light propagated through the core layer, and an optical waveguide that includes a substrate and the core layer. The core layer includes a light propagation unit and a first diffraction grating unit that receives light from the light source and guides the light to the light propagation unit, which includes a propagation channel capable of propagating light in an extending direction of the light propagation unit. The first diffraction grating unit is disposed near to and facing a light-emitting surface of the light source. The first diffraction grating unit includes first diffraction gratings, at least two of which receive light emitted from the same light-emitting surface of the light source.
    Type: Application
    Filed: March 23, 2020
    Publication date: October 1, 2020
    Applicant: Asahi Kasei Microdevices Corporation
    Inventors: Toshiro Sakamoto, Takaaki Furuya
  • Patent number: 10760981
    Abstract: A Hall sensor having a ball portion on a magnetosensitive portion is provided. A Hall sensor is provided, including: a substrate; a magnetosensitive portion formed on the substrate; an insulating film formed on the magnetosensitive portion; an electrode portion formed on the insulating film; and a ball portion which is provided on the electrode portion and is electrically connected to the electrode portion, wherein in plan view, a projection area of the ball portion accounts for 10% or more of a projection area of the magnetosensitive portion. The projection area of the ball portion may account for 20% or more of the projection area of the magnetosensitive portion. A bonding wire which is electrically connected to the ball portion and is extended from the ball portion in a direction perpendicular to an upper surface of the electrode portion may be further included.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: September 1, 2020
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Tsuyoshi Akagi, Takaaki Furuya
  • Patent number: 10677858
    Abstract: To downsize a magnetic sensor by reducing the number of terminals of the magnetic sensor. A magnetic sensor to detect a magnetic field is provided, including: a drive terminal; a first output terminal; a second output terminal; and a magnetic sensing unit in which a first conduction path through which a driving current flows between the drive terminal and the first output terminal and a second conduction path through which a driving current flows between the drive terminal and the second output terminal are formed integrally. The magnetic sensing unit may have a first extending unit extending to the first output terminal and a second extending unit extending to the second output terminal.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: June 9, 2020
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Takahisa Shikama, Takaaki Furuya
  • Publication number: 20200116631
    Abstract: It is an object of this invention to provide an optical waveguide, an optical concentration measuring device, and a method for manufacturing an optical waveguide capable of achieving an improvement of evanescent wave exuding efficiency of propagating light and light extraction efficiency. A core layer provided in an optical waveguide has a first portion having a first film thickness, a second portion having a second film thickness different from the first film thickness, and a third portion connecting the first portion and the second portion. The third portion is formed so that the film thickness is gradually increased from the second portion having the smaller film thickness toward the first portion having the larger film thickness between the first portion and the second portion, and the maximum inclination angle is 10° or more and 45° or less.
    Type: Application
    Filed: January 25, 2018
    Publication date: April 16, 2020
    Applicant: ASAHI KASEI MICRODEVICES CORPORATION
    Inventors: Toshiro SAKAMOTO, Takaaki FURUYA
  • Publication number: 20200072748
    Abstract: Sticking of core layer is suppressed, and deterioration of sensitivity of a sensor is prevented. An optical waveguide (10) includes a substrate (15), a core layer (11), a support, and a protrusion (18). The core layer (11) can transmit light. The support connects at least a portion of the substrate (15) and a portion of the core layer (11) together. The support supports the core layer (11). The protrusion (18) is arranged at a position different from a position of the support in a space between the substrate (15) and the core layer (11). The protrusion (18) has a maximum height at a position deviated from a central position cp of the core layer (11) in a width direction. The protrusion (18) protrudes toward the core layer (11) from the substrate (15).
    Type: Application
    Filed: August 30, 2019
    Publication date: March 5, 2020
    Applicant: Asahi Kasei Microdevices Corporation
    Inventors: Tatsushi YAGI, Takaaki FURUYA, Toshiro SAKAMOTO
  • Publication number: 20200033820
    Abstract: Provided is a learning processor including a base characteristic acquiring section that acquires base characteristic data indicating a characteristic of a base layer serving as a base on which a film is to be deposited by a film deposition apparatus; a film characteristic acquiring section that acquires film characteristic data indicating a characteristic of the film deposited on the base layer by the film deposition apparatus; and a first learning processing section that performs learning processing of a first model that outputs predicted film characteristic data obtained by predicting a characteristic of a film to be deposited by the film deposition apparatus based on targeted base characteristic data indicating a characteristic of a base layer serving as a target for formation of the film, using learning data that includes the base characteristic data and the film characteristic data.
    Type: Application
    Filed: July 24, 2019
    Publication date: January 30, 2020
    Inventors: Takaaki FURUYA, Koichiro UENO
  • Publication number: 20180217212
    Abstract: To downsize a magnetic sensor by reducing the number of terminals of the magnetic sensor. A magnetic sensor to detect a magnetic field is provided, including: a drive terminal; a first output terminal; a second output terminal; and a magnetic sensing unit in which a first conduction path through which a driving current flows between the drive terminal and the first output terminal and a second conduction path through which a driving current flows between the drive terminal and the second output terminal are formed integrally. The magnetic sensing unit may have a first extending unit extending to the first output terminal and a second extending unit extending to the second output terminal.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Inventors: Takahisa SHIKAMA, Takaaki FURUYA
  • Publication number: 20180143090
    Abstract: A Hall sensor having a ball portion on a magnetosensitive portion is provided. A Hall sensor is provided, including: a substrate; a magnetosensitive portion formed on the substrate; an insulating film formed on the magnetosensitive portion; an electrode portion formed on the insulating film; and a ball portion which is provided on the electrode portion and is electrically connected to the electrode portion, wherein in plan view, a projection area of the ball portion accounts for 10% or more of a projection area of the magnetosensitive portion. The projection area of the ball portion may account for 20% or more of the projection area of the magnetosensitive portion. A bonding wire which is electrically connected to the ball portion and is extended from the ball portion in a direction perpendicular to an upper surface of the electrode portion may be further included.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 24, 2018
    Inventors: Tsuyoshi AKAGI, Takaaki FURUYA