Patents by Inventor Takaaki Masukawa

Takaaki Masukawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230339775
    Abstract: A nickel-containing hydroxide capable of obtaining a positive electrode active material having excellent initial charge-discharge efficiency and a high volume capacity density. The nickel-containing hydroxide for a precursor of a positive electrode active material of a non-aqueous electrolyte secondary battery, wherein when a peak intensity of a diffraction peak appearing in the range of 2?=19.2±1 in powder X-ray diffraction measurement using CuK? rays is defined as ?, and a peak intensity of a diffraction peak appearing in the range of 2?=38.5±1 in powder X-ray diffraction measurement using CuK? rays is defined as ?, the peak intensity ratio of ?/? is 0.80 or more and 1.38 or less, and the average long diameter of primary particles is 290 nm or more and 425 nm or less.
    Type: Application
    Filed: June 29, 2023
    Publication date: October 26, 2023
    Applicant: TANAKA CHEMICAL CORPORATION
    Inventors: Yasutaka IIDA, Takaaki MASUKAWA, Kazuki KATAGIRI
  • Publication number: 20220158184
    Abstract: The present disclosure provides a precursor of a positive electrode active material, capable of obtaining the positive electrode active material that can exhibit a high discharge capacity and high charge/discharge efficiency, by being mounted on a secondary battery using a non-aqueous electrolyte, and the positive electrode active material obtained from the precursor, as well as a method for producing the positive electrode active material. The nickel composite hydroxide particles that are precursors of a positive electrode active material of a non-aqueous electrolyte secondary battery, having a void ratio of 45.0% or more and 55.0% or less.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Applicants: TANAKA CHEMICAL CORPORATION, SANYO ELECTRIC CO., LTD.
    Inventors: Taiki YASUDA, Kazuki KATAGIRI, Takaaki MASUKAWA, Masahiro TAKASHIMA, Takeshi CHIBA, Yasunobu KAWAMOTO, Takahiro SAKAMOTO, Masahiro KINOSHITA
  • Publication number: 20210328216
    Abstract: A composite hydroxide in which reactivity of a lithium compound is equalized with another composite hydroxide having a large particle diameter. The composite hydroxide includes at least one metal selected from the group consisting of nickel, cobalt, and manganese, the composite hydroxide being a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein a secondary particle diameter with a cumulative volume percentage of 50% by volume (D50) is 4.0 ?m or less, tapped density (g/ml)/secondary particle diameter with cumulative volume percentage of 50% by volume (D50) (?m) is 0.60 g/ml·?m or more, and a specific surface area measured by a BET method is 15.0 m2/g or less.
    Type: Application
    Filed: July 1, 2021
    Publication date: October 21, 2021
    Applicant: TANAKA CHEMICAL CORPORATION
    Inventors: Kazuki KATAGIRI, Takaaki MASUKAWA, Masahiro TAKASHIMA
  • Patent number: 10938019
    Abstract: The object of the present invention is to provide a positive electrode active material usable for a lithium ion battery capable of high charge/discharge cycle performance and high discharge capacity. The positive electrode active material for a lithium secondary battery has a layered structure and comprises at least nickel, cobalt and manganese. Further, the positive electrode active material satisfies requirements (1) to (3) below: (1) a primary particle size of 0.1 ?m to 1 ?m, and a 50% cumulative particle size D50 of 1 ?m to 10 ?m, (2) a ratio (D90/D10) of volume-based 90% cumulative particle size D50 to volume-based 10% cumulative particle size D10 of 2 to 6, and (3) a lithium carbonate content in a residual alkali on particle surfaces of 0.1% by mass to 0.8% by mass as measured by neutralization titration.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: March 2, 2021
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, TANAKA CHEMICAL CORPORATION
    Inventors: Hiroyuki Kurita, Kenji Takamori, Yuichiro Imanari, Takaaki Masukawa, Daisuke Yamashita, Kimiyasu Nakao
  • Patent number: 10756343
    Abstract: A positive electrode active material for a lithium secondary cell, having a layered structure and comprising at least nickel, cobalt and manganese, the positive electrode active material satisfying requirements (1), (2) and (3) below: (1) a composition represented by a composition formula: Li[Lix(Ni?Co?Mn?M?)1-x]O2, wherein 0?x?0.10, 0.30<??0.34, 0.30<??0.34, 0.32??<0.40, 0???0.10, ?<?, ?+?+?+?=1, M represents at least one metal selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, Zn, Sn, Zr, Ga and V; (2) a secondary particle diameter of 2 ?m or more and 10 ?m or less; and (3) a maximum peak value in a pore diameter range of 90 nm to 150 nm in a pore diameter distribution determined by mercury porosimetry.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: August 25, 2020
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, TANAKA CHEMICAL CORPORATION
    Inventors: Hiroyuki Kurita, Jun-ichi Kageura, Yuichiro Imanari, Yasutaka Iida, Daisuke Yamashita, Takaaki Masukawa, Hiroyuki Ito
  • Patent number: 10297824
    Abstract: Provided is a positive electrode active material which is useful for a lithium secondary battery having a battery resistance lower than that of the conventional positive electrode active material below freezing point. The positive electrode active material for a lithium secondary battery contains at least one element selected from a group consisting of nickel, cobalt and manganese, the positive electrode active material having a layered structure and satisfying all of the following requirements (1) to (3): (1) a primary particle size is 0.1 ?m to 1 ?m and a secondary particle size is 1 ?m to 10 ?m; (2) in an X-ray powder diffraction measurement using CuK? radiation, a crystallite size in the peak within 2?=18.7±1° is 100 ? to 1200 ? and a crystallite size in the peak within 2?=44.6±1° is 100 ? to 700 ?; and (3) in a pore distribution obtained by a mercury intrusion method, a pore peak exists in a range where the pore size is 10 nm to 200 nm and a pore volume in the said range is 0.01 cm3/g to 0.05 cm3/g.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: May 21, 2019
    Assignees: Tanaka Chemical Corporation, Sumitomo Chemical Company, Limited
    Inventors: Yasutaka Iida, Daisuke Yamashita, Takaaki Masukawa, Hiroyuki Ito, Hiroyuki Kurita, Kenji Takamori, Yuichiro Imanari
  • Publication number: 20180159127
    Abstract: A positive electrode active material for a lithium secondary cell, having a layered structure and comprising at least nickel, cobalt and manganese, the positive electrode active material satisfying requirements (1), (2) and (3) below: (1) a composition represented by a composition formula: Li[Lix(Ni?Co?Mn?M?)1-x]O2, wherein 0?x?0.10, 0.30<??0.34, 0.30<??0.34, 0.32??<0.40, 0???0.10, ?<?, ?+?+?+?=1, M represents at least one metal selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, Zn, Sn, Zr, Ga and V; (2) a secondary particle diameter of 2 ?m or more and 10 ?m or less; and (3) a maximum peak value in a pore diameter range of 90 nm to 150 nm in a pore diameter distribution determined by mercury porosimetry.
    Type: Application
    Filed: June 2, 2016
    Publication date: June 7, 2018
    Applicants: Sumitomo Chemical Company Limited, Tanaka Chemical Corporation
    Inventors: Hiroyuki KURITA, Jun-ichi KAGEURA, Yuichiro IMANARI, Yasutaka IIDA, Daisuke YAMASHITA, Takaaki MASUKAWA, Hiroyuki ITO
  • Publication number: 20170187031
    Abstract: The object of the present invention is to provide a positive electrode active material usable for a lithium ion battery capable of high charge/discharge cycle performance and high discharge capacity. The positive electrode active material for a lithium secondary battery has a layered structure and comprises at least nickel, cobalt and manganese. Further, the positive electrode active material satisfies requirements (1) to (3) below: (1) a primary particle size of 0.1 ?m to 1 ?m, and a 50% cumulative particle size D50 of 1 ?m to 10 ?m, (2) a ratio (D90/D10) of volume-based 90% cumulative particle size D50 to volume-based 10% cumulative particle size D10 of 2 to 6, and (3) a lithium carbonate content in a residual alkali on particle surfaces of 0.1% by mass to 0.8% by mass as measured by neutralization titration.
    Type: Application
    Filed: May 27, 2015
    Publication date: June 29, 2017
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, TANAKA CHEMICAL CORPORATION
    Inventors: Hiroyuki KURITA, Kenji TAKAMORI, Yuichiro IMANARI, Takaaki MASUKAWA, Daisuke YAMASHITA, Kimiyasu NAKAO
  • Publication number: 20160372749
    Abstract: Provided is a positive electrode active material which is useful for a lithium secondary battery having a battery resistance lower than that of the conventional positive electrode active material below freezing point. The positive electrode active material for a lithium secondary battery contains at least one element selected from a group consisting of nickel, cobalt and manganese, the positive electrode active material having a layered structure and satisfying all of the following requirements (1) to (3): (1) a primary particle size is 0.1 ?m to 1 ?m and a secondary particle size is 1 ?m to 10 ?m; (2) in an X-ray powder diffraction measurement using CuK? radiation, a crystallite size in the peak within 2?=18.7±1° is 100 ? to 1200 ? and a crystallite size in the peak within 2?=44.6±1° is 100 ? to 700 ?; and (3) in a pore distribution obtained by a mercury intrusion method, a pore peak exists in a range where the pore size is 10 nm to 200 nm and a pore volume in the said range is 0.01 cm3/g to 0.05 cm3/g.
    Type: Application
    Filed: July 1, 2014
    Publication date: December 22, 2016
    Inventors: Yasutaka IIDA, Daisuke YAMASHITA, Takaaki MASUKAWA, HIroyuki ITO, Hiroyuki KURITA, Kenji TAKAMORI, Yuichiro IMANARI
  • Publication number: 20140225031
    Abstract: A lithium-rich lithium metal complex oxide contains at least 50 mol % of Mn with respect to a total amount of metals other than lithium, and at least one other metal. The lithium metal complex oxide has a tapped density in a range of 1.0 g/ml to 2.0 g/ml.
    Type: Application
    Filed: September 26, 2012
    Publication date: August 14, 2014
    Inventors: Taiki Yasuda, Takaaki Masukawa