Patents by Inventor Takanori Yagita

Takanori Yagita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11699569
    Abstract: There is provided an ion implanter including a beamline unit that transports an ion beam, an implantation processing chamber in which an implantation process of irradiating a wafer with an ion beam is performed, an illumination device that performs irradiation with illumination light in a direction intersecting with a transport direction of the ion beam in at least one of the beamline unit and the implantation processing chamber, an imaging device that generates a captured image captured by imaging a space through which the illumination light passes, and a control device that detects a particle which scatters the illumination light, based on the captured image.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: July 11, 2023
    Assignee: SUMITOMO HEAVY INDUSTRIES ION TECHNOLOGY CO., LTD.
    Inventors: Aki Ninomiya, Takanori Yagita, Takao Morita, Sayumi Hirose
  • Publication number: 20220102112
    Abstract: There is provided an ion implanter including a beamline unit that transports an ion beam, an implantation processing chamber in which an implantation process of irradiating a wafer with an ion beam is performed, an illumination device that performs irradiation with illumination light in a direction intersecting with a transport direction of the ion beam in at least one of the beamline unit and the implantation processing chamber, an imaging device that generates a captured image captured by imaging a space through which the illumination light passes, and a control device that detects a particle which scatters the illumination light, based on the captured image.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 31, 2022
    Inventors: Aki Ninomiya, Takanori Yagita, Takao Morita, Sayumi Hirose
  • Patent number: 11017978
    Abstract: An ion implanter having a beam park device on the way of a beamline through which an ion beam is transported toward a wafer is provided. The beam park device includes a pair of park electrodes which faces each other across the beamline, and a beam dump which is provided away from the beamline in a facing direction of the pair of park electrodes and on a downstream side of the pair of park electrodes in a beamline direction. At least one of the pair of park electrodes includes a plurality of electrode bodies which are disposed to be spaced apart from each other in a predetermined direction perpendicular to both a direction in which the beamline extends and the facing direction, and each of the plurality of electrode bodies extends from an upstream side toward the downstream side in the beamline direction.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: May 25, 2021
    Assignee: SUMITOMO HEAVY INDUSTRIES ION TECHNOLOGY CO., LTD.
    Inventor: Takanori Yagita
  • Publication number: 20200152409
    Abstract: An ion implanter having a beam park device on the way of a beamline through which an ion beam is transported toward a wafer is provided. The beam park device includes a pair of park electrodes which faces each other across the beamline, and a beam dump which is provided away from the beamline in a facing direction of the pair of park electrodes and on a downstream side of the pair of park electrodes in a beamline direction. At least one of the pair of park electrodes includes a plurality of electrode bodies which are disposed to be spaced apart from each other in a predetermined direction perpendicular to both a direction in which the beamline extends and the facing direction, and each of the plurality of electrode bodies extends from an upstream side toward the downstream side in the beamline direction.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Inventor: Takanori Yagita
  • Patent number: 9520265
    Abstract: A multistage quadrupole lens system in an ion implantation apparatus includes a first quadrupole lens and a third quadrupole lens. A first bore radius of the first quadrupole lens may be smaller than a third bore radius of the third quadrupole lens. The multistage quadrupole lens system may further include a second quadrupole lens placed between the first quadrupole lens and the third quadrupole lens. A second bore radius of the second quadrupole lens may take a value lying between the first bore radius of the first quadrupole lens and the third bore radius of the third quadrupole lens (i.e., an intermediate value between them).
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: December 13, 2016
    Assignee: Sumitomo Heavy Industries Ion Technology Co., Ltd.
    Inventor: Takanori Yagita
  • Patent number: 9431214
    Abstract: An ion implantation apparatus includes a scanning unit, the scanning unit including a scanning electrode device that allows a deflecting electric field to act on an ion beam incident along a reference trajectory and scans the ion beam in a horizontal direction, and an upstream electrode device provided upstream of the scanning electrode device. The scanning electrode device includes a pair of scanning electrodes provided to face each other in the horizontal direction with the reference trajectory interposed therebetween and a pair of beam transport correction electrodes provided to face each other in a vertical direction perpendicular to the horizontal direction with the reference trajectory interposed therebetween. Each of the pair of beam transport correction electrode includes a beam transport correction inlet electrode body protruding toward the reference trajectory in the vertical direction in the vicinity of an inlet of the scanning electrode device.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: August 30, 2016
    Assignee: Sumitomo Heavy Industries Ion Technology Co., Ltd.
    Inventors: Hiroshi Matsushita, Mitsuaki Kabasawa, Yoshitaka Amano, Takanori Yagita
  • Patent number: 9343262
    Abstract: An ion implantation apparatus includes a beam parallelizing unit and a third power supply unit. The beam parallelizing unit includes an acceleration lens, and a deceleration lens disposed adjacent to the acceleration lens in an ion beam transportation direction. The third power supply unit operates the beam parallelizing unit under one of a plurality of energy settings. The plurality of energy settings includes a first energy setting suitable for transport of a low energy ion, and a second energy setting suitable for transport of a high energy ion beam. The third power supply unit is configured to generate a potential difference in at least the acceleration lens under the second energy setting, and generate a potential difference in at least the deceleration lens under the first energy setting. A curvature of the deceleration lens is smaller than a curvature of the acceleration lens.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: May 17, 2016
    Assignee: Sumitomo Heavy Industries Ion Technology Co., Ltd.
    Inventors: Takanori Yagita, Mitsuaki Kabasawa, Haruka Sasaki
  • Patent number: 9293295
    Abstract: A final energy filter includes a first adjustment electrode portion, an intermediate electrode portion, and a second adjustment electrode portion. The final energy filter further includes a power supply unit. The power supply unit is configured such that it applies the voltages separately to the first adjustment electrode portion, the intermediate electrode portion, and the second adjustment electrode portion. The power supply unit applies voltages to an upstream auxiliary electrode portion, a deflection electrode portion and a downstream auxiliary electrode portion, respectively, such that the energy range of ion beam in a first region between the upstream auxiliary electrode portion and the deflection electrode portion is approximately equal to that in a second region between the deflection electrode portion and the downstream auxiliary electrode portion.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: March 22, 2016
    Assignee: Sumitomo Heavy Industries Ion Technology Co., Ltd.
    Inventor: Takanori Yagita
  • Patent number: 9236222
    Abstract: An ion implantation apparatus includes a beam scanning unit and a beam parallelizing unit arranged downstream thereof. The beam scanning unit has a scan origin in a central part of the scanning unit on a central axis of an incident ion beam. The beam parallelizing unit has a focal point of a parallelizing lens at the scan origin. The ion implantation apparatus is configured such that a focal position of the incident beam into the scanning unit is located upstream of the scan origin along the central axis of the incident beam. The focal position of the incident beam into the scanning unit is adjusted to be at a position upstream of the scan origin along the central axis of the incident beam such that a divergence phenomenon caused by the space charge effect in an exiting ion beam from the parallelizing unit is compensated.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: January 12, 2016
    Assignee: Sumitomo Heavy Industries Ion Technology Co., Ltd.
    Inventors: Takanori Yagita, Mitsuaki Kabasawa
  • Publication number: 20150357160
    Abstract: An ion implantation apparatus includes a beam scanning unit and a beam parallelizing unit arranged downstream thereof. The beam scanning unit has a scan origin in a central part of the scanning unit on a central axis of an incident ion beam. The beam parallelizing unit has a focal point of a parallelizing lens at the scan origin. The ion implantation apparatus is configured such that a focal position of the incident beam into the scanning unit is located upstream of the scan origin along the central axis of the incident beam. The focal position of the incident beam into the scanning unit is adjusted to be at a position upstream of the scan origin along the central axis of the incident beam such that a divergence phenomenon caused by the space charge effect in an exiting ion beam from the parallelizing unit is compensated.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Takanori Yagita, Mitsuaki Kabasawa
  • Patent number: 9208991
    Abstract: An ion implantation apparatus includes a scanning unit scanning the ion beams in a horizontal direction perpendicular to the reference trajectory and a downstream electrode device disposed downstream of the scanning electrode device. The scanning electrode device includes a pair of scanning electrodes disposed to face each other in the horizontal direction with the reference trajectory interposed therebetween. The downstream electrode device includes an electrode body configured such that, with respect to an opening width in a vertical direction perpendicular to both the reference trajectory and the horizontal direction and/or an opening thickness in a direction along the reference trajectory, the opening width and/or the opening thickness in a central portion in which the reference trajectory is disposed is different from the opening width and/or the opening thickness in the vicinity of a position facing the downstream end of the scanning electrode.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: December 8, 2015
    Assignee: Sumitomo Heavy Industries Ion Technology Co., Ltd.
    Inventors: Hiroshi Matsushita, Mitsuaki Kabasawa, Yoshitaka Amano, Takanori Yagita
  • Publication number: 20150340202
    Abstract: An ion implantation apparatus includes a scanning unit, the scanning unit including a scanning electrode device that allows a deflecting electric field to act on an ion beam incident along a reference trajectory and scans the ion beam in a horizontal direction, and an upstream electrode device provided upstream of the scanning electrode device. The scanning electrode device includes a pair of scanning electrodes provided to face each other in the horizontal direction with the reference trajectory interposed therebetween and a pair of beam transport correction electrodes provided to face each other in a vertical direction perpendicular to the horizontal direction with the reference trajectory interposed therebetween. Each of the pair of beam transport correction electrode includes a beam transport correction inlet electrode body protruding toward the reference trajectory in the vertical direction in the vicinity of an inlet of the scanning electrode device.
    Type: Application
    Filed: May 26, 2015
    Publication date: November 26, 2015
    Inventors: Hiroshi Matsushita, Mitsuaki Kabasawa, Yoshitaka Amano, Takanori Yagita
  • Publication number: 20150340197
    Abstract: An ion implantation apparatus includes a scanning unit scanning the ion beams in a horizontal direction perpendicular to the reference trajectory and a downstream electrode device disposed downstream of the scanning electrode device. The scanning electrode device includes a pair of scanning electrodes disposed to face each other in the horizontal direction with the reference trajectory interposed therebetween. The downstream electrode device includes an electrode body configured such that, with respect to an opening width in a vertical direction perpendicular to both the reference trajectory and the horizontal direction and/or an opening thickness in a direction along the reference trajectory, the opening width and/or the opening thickness in a central portion in which the reference trajectory is disposed is different from the opening width and/or the opening thickness in the vicinity of a position facing the downstream end of the scanning electrode.
    Type: Application
    Filed: May 26, 2015
    Publication date: November 26, 2015
    Inventors: Hiroshi Matsushita, Mitsuaki Kabasawa, Yoshitaka Amano, Takanori Yagita
  • Publication number: 20150279612
    Abstract: A final energy filter includes a first adjustment electrode portion, an intermediate electrode portion, and a second adjustment electrode portion. The final energy filter further includes a power supply unit. The power supply unit is configured such that it applies the voltages separately to the first adjustment electrode portion, the intermediate electrode portion, and the second adjustment electrode portion. The power supply unit applies voltages to an upstream auxiliary electrode portion, a deflection electrode portion and a downstream auxiliary electrode portion, respectively, such that the energy range of ion beam in a first region between the upstream auxiliary electrode portion and the deflection electrode portion is approximately equal to that in a second region between the deflection electrode portion and the downstream auxiliary electrode portion.
    Type: Application
    Filed: March 26, 2015
    Publication date: October 1, 2015
    Inventor: Takanori Yagita
  • Patent number: 9117627
    Abstract: An ion implantation apparatus includes an implantation processing chamber, a high voltage unit, and a high-voltage power supply system. In the implantation processing chamber ions are implanted into a workpiece. The high voltage unit includes an ion source unit for generating the ions, and a beam transport unit provided between the ion source unit and the implantation processing chamber. The high-voltage power supply system applies a potential to the high voltage unit under any one of a plurality of energy settings. The high-voltage power supply system includes a plurality of current paths formed such that a beam current flowing into the workpiece is returned to the ion source unit, and each of the plurality of energy settings is associated with a corresponding one of the plurality of current paths.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: August 25, 2015
    Assignee: Sumitomo Heavy Industries Technology Co., Ltd.
    Inventors: Kazuhisa Manabe, Takanori Yagita
  • Publication number: 20150155129
    Abstract: A multistage quadrupole lens system in an ion implantation apparatus includes a first quadrupole lens and a third quadrupole lens. A first bore radius of the first quadrupole lens may be smaller than a third bore radius of the third quadrupole lens. The multistage quadrupole lens system may further include a second quadrupole lens placed between the first quadrupole lens and the third quadrupole lens. A second bore radius of the second quadrupole lens may take a value lying between the first bore radius of the first quadrupole lens and the third bore radius of the third quadrupole lens (i.e., an intermediate value between them).
    Type: Application
    Filed: December 2, 2014
    Publication date: June 4, 2015
    Inventor: Takanori Yagita
  • Publication number: 20150064887
    Abstract: An ion implantation apparatus includes an implantation processing chamber, a high voltage unit, and a high-voltage power supply system. In the implantation processing chamber ions are implanted into a workpiece. The high voltage unit includes an ion source unit for generating the ions, and a beam transport unit provided between the ion source unit and the implantation processing chamber. The high-voltage power supply system applies a potential to the high voltage unit under any one of a plurality of energy settings. The high-voltage power supply system includes a plurality of current paths formed such that a beam current flowing into the workpiece is returned to the ion source unit, and each of the plurality of energy settings is associated with a corresponding one of the plurality of current paths.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 5, 2015
    Applicant: SEN CORPORATION
    Inventors: Kazuhisa Manabe, Takanori Yagita
  • Publication number: 20150064888
    Abstract: An ion implantation apparatus includes a beam parallelizing unit and a third power supply unit. The beam parallelizing unit includes an acceleration lens, and a deceleration lens disposed adjacent to the acceleration lens in an ion beam transportation direction. The third power supply unit operates the beam parallelizing unit under one of a plurality of energy settings. The plurality of energy settings includes a first energy setting suitable for transport of a low energy ion, and a second energy setting suitable for transport of a high energy ion beam. The third power supply unit is configured to generate a potential difference in at least the acceleration lens under the second energy setting, and generate a potential difference in at least the deceleration lens under the first energy setting. A curvature of the deceleration lens is smaller than a curvature of the acceleration lens.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 5, 2015
    Applicant: SEN CORPORATION
    Inventors: Takanori Yagita, Mitsuaki Kabasawa, Haruka Sasaki
  • Patent number: 8692216
    Abstract: A vertical profile, a horizontal profile, and an integrated current value of an ion beam are measured by a plurality of stationary beam measuring instruments and a movable or stationary beam measuring device. At a beam current adjustment stage before ion implantation, a control device simultaneously performs at least one of adjustment of a beam current to a preset value of the beam current, adjustment of a horizontal beam size that is necessary to secure uniformity of the horizontal ion beam density, and adjustment of a vertical beam size that is necessary to secure the uniformity of the vertical ion implantation distribution on the basis of a measurement value of the stationary beam measuring instruments and the movable or stationary beam measuring device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 8, 2014
    Assignee: Sen Corporation
    Inventors: Hiroyuki Kariya, Masaki Ishikawa, Yoshiaki Inda, Takeshi Kurose, Takanori Yagita, Toshio Yumiyama
  • Publication number: 20130256566
    Abstract: A vertical profile, a horizontal profile, and an integrated current value of an ion beam are measured by a plurality of stationary beam measuring instruments and a movable or stationary beam measuring device. At a beam current adjustment stage before ion implantation, a control device simultaneously performs at least one of adjustment of a beam current to a preset value of the beam current, adjustment of a horizontal beam size that is necessary to secure uniformity of the horizontal ion beam density, and adjustment of a vertical beam size that is necessary to secure the uniformity of the vertical ion implantation distribution on the basis of a measurement value of the stationary beam measuring instruments and the movable or stationary beam measuring device.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: SEN CORPORATION
    Inventors: Hiroyuki KARIYA, Masaki Ishikawa, Yoshiaki Inda, Takeshi Kurose, Takanori Yagita, Toshio Yumiyama