Patents by Inventor Takao Nakamura

Takao Nakamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110201142
    Abstract: To provide a light-emitting device using a nitride semiconductor which can attain high-power light emission by highly efficient light emission, a method of manufacturing the light-emitting device involves forming a first AlGaN layer of a first conductivity type on a side of a first main surface of a nitride semiconductor substrate, forming a light-emitting layer including an InAlGaN quaternary alloy on the first AlGaN layer, forming a second AlGaN layer of a second conductivity type on the light-emitting layer, and removing the nitride semiconductor substrate after forming the second AlGaN layer.
    Type: Application
    Filed: April 25, 2011
    Publication date: August 18, 2011
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., RIKEN
    Inventors: Hideki HIRAYAMA, Katsushi AKITA, Takao NAKAMURA
  • Publication number: 20110198566
    Abstract: A method for manufacturing a light emitting element is directed to a method for manufacturing a light emitting element of a III-V group compound semiconductor having a quantum well structure including In and N, including the steps of: forming a well layer including In and N; forming a barrier layer having a bandgap wider than a bandgap of the well layer; and supplying a gas including N and interrupting epitaxial growth after the step of forming the well layer and before the step of forming the barrier layer. In the step of interrupting epitaxial growth, the gas having decomposition efficiency higher than decomposition efficiency of decomposition from N2 and NH3 into active nitrogen at 900° C. is supplied. In addition, in the step of interrupting epitaxial growth, the gas different from a gas used as an N source of the well layer is supplied.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 18, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke Yoshizumi, Masaki Ueno, Takao Nakamura, Toshio Ueda, Eiryo Takasuka, Yasuhiko Senda
  • Publication number: 20110186860
    Abstract: Disclosed is a nitride-based semiconductor light emitting device with excellent light extraction efficiency. A light emitting device 11 includes a support base 13 and a semiconductor laminate 15. The semiconductor laminate 15 includes an n-type GaN-based semiconductor region 17, an active layer 19, and a p-type GaN-based semiconductor region 21. The n-type GaN-based semiconductor region 17, the active layer 19, and the p-type GaN-based semiconductor region 21 are mounted on a principal surface 13a, and are arranged in the direction of a predetermined axis Ax orthogonal to the principal surface 13a. A rear surface 13b of the support base 13 is inclined with respect to a plane orthogonal to a reference axis extending in the c-axis direction of a hexagonal gallium nitride semiconductor of the support base 13. A vector VC represents the c-axis direction. A surface morphology M of the rear surface 13b has a plurality of protrusions 23 protruding in the direction of a <000-1>-axis.
    Type: Application
    Filed: April 13, 2011
    Publication date: August 4, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yohei ENYA, Yusuke YOSHIZUMI, Takashi KYONO, Masaki UENO, Takao NAKAMURA
  • Publication number: 20110180805
    Abstract: A III-nitride semiconductor device has a support base comprised of a III-nitride semiconductor and having a primary surface extending along a first reference plane perpendicular to a reference axis inclined at a predetermined angle ALPHA with respect to the c-axis of the III-nitride semiconductor, and an epitaxial semiconductor region provided on the primary surface of the support base. The epitaxial semiconductor region includes a plurality of GaN-based semiconductor layers. The reference axis is inclined at a first angle ALPHA1 in the range of not less than 10 degrees, and less than 80 degrees from the c-axis of the III-nitride semiconductor toward a first crystal axis, either one of the m-axis and a-axis. The reference axis is inclined at a second angle ALPHA2 in the range of not less than ?0.30 degrees and not more than +0.30 degrees from the c-axis of the III-nitride semiconductor toward a second crystal axis, the other of the m-axis and a-axis.
    Type: Application
    Filed: July 14, 2010
    Publication date: July 28, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yohei ENYA, Yusuke YOSHIZUMI, Takashi KYONO, Takamichi SUMITOMO, Katsushi AKITA, Masaki UENO, Takao NAKAMURA
  • Publication number: 20110180166
    Abstract: A hydraulic circuit of an injection cylinder in a die-casting apparatus, which can achieve IN restriction and OUT restriction in a quickly switchable manner with a single circuit and which allows manufacturing of a high-quality molded product. The hydraulic circuit includes: a first pressure oil path supplying pressure oil to the injection cylinder; a second pressure oil path returning the pressure oil from the injection cylinder; a first flow control valve controlling a flow of the pressure oil through the first pressure oil path; a second flow control valve controlling a flow of the pressure oil through the second pressure oil path; a bypass pressure oil path connected to the second pressure oil path for bypassing the second flow control valve; a bypass on-off valve provided on the bypass pressure oil path and opening/closing the bypass pressure oil path with the pressure oil; and a controller controlling each valve.
    Type: Application
    Filed: November 4, 2008
    Publication date: July 28, 2011
    Applicant: TOYO MACHINERY & METAL CO., LTD.
    Inventors: Takao Nakamura, Akihiro Yamanaka, Hiroshi Yukutomo, Kenji Fujii
  • Patent number: 7978877
    Abstract: A method for embedding a watermark into digital data, when the watermark is to be embedded in a digital image, independently changes real number components and imaginary number components of each of coefficient values of a complex watermark coefficient matrix using key, from the watermark to be embedded in the digital image, a step for performing a discrete Fourier inverse transform on the sequence matrix of the changed watermark and generating a watermark pattern; and a step for adding like tiling the water mark pattern to the original image, and generating an embedded image.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: July 12, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takao Nakamura, Hiroshi Ogawa, Atsuki Tomioka, Youichi Takashima
  • Publication number: 20110164637
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Application
    Filed: March 17, 2011
    Publication date: July 7, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Shinji TOKUYAMA, Koji KATAYAMA, Takao NAKAMURA, Takatoshi IKEGAMI
  • Patent number: 7970164
    Abstract: A digital watermark embedding method of the present invention includes: a step of sequentially obtaining each frame image of the moving image data and frame display time; a step of generating a watermark pattern using watermark information, the frame display time and watermark pattern switching information; a step of superimposing the watermark pattern onto the frame image, and combining watermark embedded frame images obtained by sequentially repeating the processes to generate watermark embedded moving image data. A digital watermark detection method includes a step of sequentially obtaining a frame image; a step of generating a difference image between the currently obtained frame image and a previously obtained frame image; and a step of performing digital watermark detection from the difference image to output digital watermark detection status, and when digital watermark detection process is continued, obtaining a new frame again to repeat the above processes.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: June 28, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takao Nakamura, Susumu Yamamoto, Ryo Kitahara, Takashi Miyatake, Atushi Katayama, Hisato Miyachi
  • Publication number: 20110124142
    Abstract: In a GaN based semiconductor optical device 11a, the primary surface 13a of the substrate 13 tilts at a tilting angle toward an m-axis direction of the first GaN based semiconductor with respect to a reference axis “Cx” extending in a direction of a c-axis of the first GaN based semiconductor, and the tilting angle is 63 degrees or more, and is less than 80 degrees. The GaN based semiconductor epitaxial region 15 is provided on the primary surface 13a. On the GaN based semiconductor epitaxial region 15, an active layer 17 is provided. The active layer 17 includes one semiconductor epitaxial layer 19. The semiconductor epitaxial layer 19 is composed of InGaN. The thickness direction of the semiconductor epitaxial layer 19 tilts with respect to the reference axis “Cx.” The reference axis “Cx” extends in the direction of the [0001] axis. This structure provides the GaN based semiconductor optical device that can reduces decrease in light emission characteristics due to the indium segregation.
    Type: Application
    Filed: February 1, 2011
    Publication date: May 26, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yohei Enya, Yusuke Yoshizumi, Masaki Ueno, Katsushi Akita, Takashi Kyono, Takamichi Sumitomo, Takao Nakamura
  • Publication number: 20110114916
    Abstract: A III-nitride semiconductor optical device has a support base comprised of a III-nitride semiconductor, an n-type gallium nitride based semiconductor layer, a p-type gallium nitride based semiconductor layer, and an active layer. The support base has a primary surface at an angle with respect to a reference plane perpendicular to a reference axis extending in a c-axis direction of the III-nitride semiconductor. The n-type gallium nitride based semiconductor layer is provided over the primary surface of the support base. The p-type gallium nitride based semiconductor layer is doped with magnesium and is provided over the primary surface of the support base. The active layer is provided between the n-type gallium nitride based semiconductor layer and the p-type gallium nitride based semiconductor layer over the primary surface of the support base. The angle is in the range of not less than 40° and not more than 140°. The primary surface demonstrates either one of semipolar nature and nonpolar nature.
    Type: Application
    Filed: July 14, 2010
    Publication date: May 19, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Katsushi AKITA, Masaki UENO, Takashi KYONO, Takao NAKAMURA
  • Publication number: 20110116679
    Abstract: A method for embedding a watermark into digital data, when the watermark is to be embedded in a digital image, independently changes real number components and imaginary number components of each of coefficient values of a complex watermark coefficient matrix using key, from the watermark to be embedded in the digital image, a step for performing a discrete Fourier inverse transform on the sequence matrix of the changed watermark and generating a watermark pattern; and a step for adding like tiling the water mark pattern to the original image, and generating an embedded image.
    Type: Application
    Filed: August 6, 2010
    Publication date: May 19, 2011
    Inventors: Takao Nakamura, Hiroshi Ogawa, Atsuki Tomioka, Youichi Takashima
  • Patent number: 7943943
    Abstract: To provide a light-emitting device using a nitride semiconductor which can attain high-power light emission by highly efficient light emission and a manufacturing method thereof, the light-emitting device includes a GaN substrate and a light-emitting layer including an InAlGaN quaternary alloy on a side of a first main surface of GaN substrate.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: May 17, 2011
    Assignees: Sumitomo Electric Industries, Ltd., RIKEN
    Inventors: Hideki Hirayama, Katsushi Akita, Takao Nakamura
  • Publication number: 20110111578
    Abstract: A method of forming a p-type gallium nitride based semiconductor without activation annealing is provided, and the method can provide a gallium nitride based semiconductor doped with a p-type dopant. A GaN semiconductor region 17 containing a p-type dopant is formed on a supporting base 13 in a reactor 10. An organometallic source and ammonia are supplied to the reactor 10 to grow the GaN semiconductor layer 17 on a GaN semiconductor layer 15. The GaN semiconductor is doped with a p-type dopant. Examples of the p-type dopant include magnesium. After the GaN semiconductor regions 15 and 17 are grown, an atmosphere 19 containing at least one of monomethylamine and monoethylamine is prepared in the reactor 10. After the atmosphere 19 is prepared, a substrate temperature is decreased from the growth temperature of the GaN semiconductor region 17. When the substrate temperature is lowered to room temperature after this film formation, a p-type GaN semiconductor 17a and an epitaxial wafer E has been fabricated.
    Type: Application
    Filed: December 16, 2010
    Publication date: May 12, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki UENO, Yusuke YOSHIZUMI, Takao NAKAMURA
  • Patent number: 7933303
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: April 26, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke Yoshizumi, Yohei Enya, Takashi Kyono, Masahiro Adachi, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Shinji Tokuyama, Koji Katayama, Takao Nakamura, Takatoshi Ikegami
  • Publication number: 20110075694
    Abstract: In a III-nitride semiconductor laser device, a laser structure includes a support base with a semipolar primary surface comprised of a III-nitride semiconductor, and a semiconductor region provided on the semipolar primary surface of the support base. First and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device are provided on first and second end faces of the semiconductor region, respectively. The semiconductor region includes a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer provided between the first cladding layer and the second cladding layer. The first cladding layer, the second cladding layer, and the active layer are arranged in an axis normal to the semipolar primary surface.
    Type: Application
    Filed: July 7, 2010
    Publication date: March 31, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Shinji TOKUYAMA, Takamichi SUMITOMO, Masaki UENO, Takatoshi IKEGAMI, Koji KATAYAMA, Takao NAKAMURA
  • Publication number: 20110075695
    Abstract: In a III-nitride semiconductor laser device, a laser structure includes a support base with a semipolar primary surface comprised of a III-nitride semiconductor, and a semiconductor region provided on the semipolar primary surface of the support base. First and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device are provided on first and second end faces of the semiconductor region, respectively. The semiconductor region includes a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer provided between the first cladding layer and the second cladding layer. The first cladding layer, the second cladding layer, and the active layer are arranged in an axis normal to the semipolar primary surface.
    Type: Application
    Filed: July 7, 2010
    Publication date: March 31, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Shinji TOKUYAMA, Takamichi SUMITOMO, Masaki UENO, Takatoshi IKEGAMI, Koji KATAYAMA, Takao NAKAMURA
  • Publication number: 20110057167
    Abstract: In the nitride based semiconductor optical device LE1, the strained well layers 21 extend along a reference plane SR1 tilting at a tilt angle ? from the plane that is orthogonal to a reference axis extending in the direction of the c-axis. The tilt angle ? is in the range of greater than 59 degrees to less than 80 degrees or greater than 150 degrees to less than 180 degrees. A gallium nitride based semiconductor layer P is adjacent to a light-emitting layer SP? with a negative piezoelectric field and has a band gap larger than that of a barrier layer. The direction of the piezoelectric field in the well layer W3 is directed in a direction from the n-type layer to the p-type layer, and the piezoelectric field in the gallium nitride based semiconductor layer P is directed in a direction from the p-type layer to the n-type layer. Consequently, the valence band, not the conduction band, has a dip at the interface between the light-emitting layer SP? and the gallium nitride based semiconductor layer P.
    Type: Application
    Filed: November 16, 2010
    Publication date: March 10, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki UENO, Yohei ENYA, Takashi KYONO, Katsushi AKITA, Yusuke YOSHIZUMI, Takamichi SUMITOMO, Takao NAKAMURA
  • Publication number: 20110057200
    Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 10, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi KYONO, Yusuke YOSHIZUMI, Yohei ENYA, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Takao NAKAMURA
  • Publication number: 20110058585
    Abstract: A group-III nitride semiconductor laser device comprises a laser structure including a support base and a semiconductor region, and an electrode provided on the semiconductor region of the laser structure. The support base comprises a hexagonal group-III nitride semiconductor and has a semipolar primary surface, and the semiconductor region is provided on the semipolar primary surface of the support base. The semiconductor region includes a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer. The first cladding layer, the second cladding layer, and the active layer are arranged along a normal axis to the semipolar primary surface. The active layer comprises a gallium nitride-based semiconductor layer.
    Type: Application
    Filed: July 29, 2010
    Publication date: March 10, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Shinji TOKUYAMA, Koji KATAYAMA, Takao NAKAMURA, Takatoshi IKEGAMI
  • Publication number: 20110042644
    Abstract: In the nitride based semiconductor optical device LE1, the strained well layers 21 extend along a reference plane SR1 tilting at a tilt angle ? from the plane that is orthogonal to a reference axis extending in the direction of the c-axis. The tilt angle ? is in the range of greater than 59 degrees to less than 80 degrees or greater than 150 degrees to less than 180 degrees. A gallium nitride based semiconductor layer P is adjacent to a light-emitting layer SP? with a negative piezoelectric field and has a band gap larger than that of a barrier layer. The direction of the piezoelectric field in the well layer W3 is directed in a direction from the n-type layer to the p-type layer, and the piezoelectric field in the gallium nitride based semiconductor layer P is directed in a direction from the p-type layer to the n-type layer. Consequently, the valence band, not the conduction band, has a dip at the interface between the light-emitting layer SP? and the gallium nitride based semiconductor layer P.
    Type: Application
    Filed: April 1, 2010
    Publication date: February 24, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Masaki UENO, Yohei ENYA, Takashi KYONO, Katsushi AKITA, Yusuke YOSHIZUMI, Takamichi SUMITOMO, Takao NAKAMURA