Patents by Inventor Takashi Itoga

Takashi Itoga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120012972
    Abstract: A semiconductor device of the present invention is arranged in such a manner that a MOS non-single-crystal silicon thin-film transistor including a non-single-crystal silicon thin film made of polycrystalline silicon, a MOS single-crystal silicon thin-film transistor including a single-crystal silicon thin film, and a metal wiring are provided on an insulating substrate. With this arrangement, (i) a semiconductor device in which a non-single-crystal silicon thin film and a single-crystal silicon thin-film device are formed and high-performance systems are integrated, (ii) a method of manufacturing the semiconductor device, and (iii) a single-crystal silicon substrate for forming the single-crystal silicon thin-film device of the semiconductor device are obtained.
    Type: Application
    Filed: September 30, 2011
    Publication date: January 19, 2012
    Inventors: Yutaka TAKAFUJI, Takashi Itoga
  • Patent number: 7999400
    Abstract: A semiconductor device and a method for manufacturing such semiconductor device are provided. Specifically, in the semiconductor manufacture, a recessed alignment mark is formed on a front plane of a high distortion point glass substrate as a target for alignment for bonding, and the recessed alignment mark is permitted to have a shape which extends to an external side of the semiconductor device. Thus, excellent bonding between the high distortion point glass substrate and the semiconductor device can be provided, and at the same time, since the recessed alignment mark is not sealed, the bonding state can be maintained even when the high distortion point glass substrate is exposed under the high temperature condition after bonding the semiconductor device.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: August 16, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takashi Itoga, Yasuyuki Ogawa
  • Patent number: 7919392
    Abstract: On an SOI substrate, a hydrogen ion implantation section in which distribution of hydrogen ions peaks in a BOX layer (buried oxide film layer), and a single-crystal silicon thin-film transistor are formed. Then this SOI substrate is bonded with an insulating substrate. Subsequently, the SOI substrate is cleaved at the hydrogen ion implantation section by carrying out heat treatment, so that an unnecessary part of the SOI substrate is removed, Furthermore, the BOX layer remaining on the single-crystal silicon thin-film transistor is removed by etching. With this, it is possible to from a single-crystal silicon thin-film device on an insulating substrate, without using an adhesive. Moreover, it is possible to provide a semiconductor device which has no surface damage and includes a single-crystal silicon thin film which is thin and uniform in thickness.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: April 5, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yutaka Takafuji, Takashi Itoga
  • Patent number: 7884367
    Abstract: A polycrystalline Si thin film and a single crystal Si thin film are formed on an SiO2 film deposited on an insulating substrate. A polycrystalline Si layer is grown by thermally crystallizing an amorphous Si thin film so as to form the polycrystalline Si thin film. A single crystal Si substrate, having (a) an SiO2 film thereon and (b) a hydrogen ion implantation portion therein, is bonded to an area of the polycrystalline Si thin film that has been subjected to etching removal, and is subjected to a heating process. Then, the single crystal Si substrate is divided at the hydrogen ion implantation portion in an exfoliating manner, so as to form the single crystal Si thin film. As a result, it is possible to provide a large-size semiconductor device, having the single crystal Si thin film, whose property is stable, at a low cost.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: February 8, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yutaka Takafuji, Takashi Itoga
  • Publication number: 20100019242
    Abstract: A polycrystalline Si thin film and a single crystal Si thin film are formed on an SiO2 film deposited on an insulating substrate. A polycrystalline Si layer is grown by thermally crystallizing an amorphous Si thin film so as to form the polycrystalline Si thin film. A single crystal Si substrate, having (a) an SiO2 film thereon and (b) a hydrogen ion implantation portion therein, is bonded to an area of the polycrystalline Si thin film that has been subjected to etching removal, and is subjected to a heating process. Then, the single crystal Si substrate is divided at the hydrogen ion implantation portion in an exfoliating manner, so as to form the single crystal Si thin film. As a result, it is possible to provide a large-size semiconductor device, having the single crystal Si thin film, whose property is stable, at a low cost.
    Type: Application
    Filed: October 6, 2009
    Publication date: January 28, 2010
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Yutaka TAKAFUJI, Takashi Itoga
  • Patent number: 7619250
    Abstract: A polycrystalline Si thin film and a single crystal Si thin film are formed on an SiO2 film deposited on an insulating substrate. A polycrystalline Si layer is grown by thermally crystallizing an amorphous Si thin film so as to form the polycrystalline Si thin film. A single crystal Si substrate, having (a) an SiO2 film thereon and (b) a hydrogen ion implantation portion therein, is bonded to an area of the polycrystalline Si thin film that has been subjected to etching removal, and is subjected to a heating process. Then, the single crystal Si substrate is divided at the hydrogen ion implantation portion in an exfoliating manner, so as to form the single crystal Si thin film. As a result, it is possible to provide a large-size semiconductor device, having the single crystal Si thin film, whose property is stable, at a low cost.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: November 17, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yutaka Takafuji, Takashi Itoga
  • Publication number: 20090269907
    Abstract: On an SOI substrate, a hydrogen ion implantation section in which distribution of hydrogen ions peaks in a BOX layer (buried oxide film layer), and a single-crystal silicon thin-film transistor are formed. Then this SOI substrate is bonded with an insulating substrate. Subsequently, the SOI substrate is cleaved at the hydrogen ion implantation section by carrying out heat treatment, so that an unnecessary part of the SOI substrate is removed, Furthermore, the BOX layer remaining on the single-crystal silicon thin-film transistor is removed by etching. With this, it is possible to from a single-crystal silicon thin-film device on an insulating substrate, without using an adhesive. Moreover, it is possible to provide a semiconductor device which has no surface damage and includes a single-crystal silicon thin film which is thin and uniform in thickness.
    Type: Application
    Filed: July 9, 2009
    Publication date: October 29, 2009
    Applicant: Sharp Kabushiki Kaishi
    Inventors: Yutaka Takafuji, Takashi Itoga
  • Publication number: 20090206495
    Abstract: A semiconductor device wherein a force of peeling a chip from a substrate does not operate even the semiconductor device is exposed under a high temperature condition after bonding and a bonding state of the substrate and the chip can be maintained, and a method for manufacturing such semiconductor device are provided. Specifically, in the semiconductor manufacture, a recessed alignment mark is formed on a front plane of a high distortion point glass substrate as a target for alignment for bonding, and the recessed alignment mark is permitted to have a shape which extends to an external side of the semiconductor device. Thus, excellent bonding between the high distortion point glass substrate and the semiconductor device can be provided, and at the same time, since the recessed alignment mark is not sealed, the bonding state can be maintained even when the high distortion point glass substrate is exposed under the high temperature condition after bonding the semiconductor device.
    Type: Application
    Filed: January 30, 2006
    Publication date: August 20, 2009
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Takashi Itoga, Yasuyuki Ogawa
  • Publication number: 20090095956
    Abstract: A semiconductor device of the present invention is arranged in such a manner that a MOS non-single-crystal silicon thin-film transistor including a non-single-crystal silicon thin film made of polycrystalline silicon, a MOS single-crystal silicon thin-film transistor including a single-crystal silicon thin film, and a metal wiring are provided on an insulating substrate. With this arrangement, (i) a semiconductor device in which a non-single-crystal silicon thin film and a single-crystal silicon thin-film device are formed and high-performance systems are integrated, (ii) a method of manufacturing the semiconductor device, and (iii) a single-crystal silicon substrate for forming the single-crystal silicon thin-film device of the semiconductor device are obtained.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 16, 2009
    Inventors: Yutaka TAKAFUJI, Takashi Itoga
  • Patent number: 7508034
    Abstract: A semiconductor device of the present invention is arranged in such a manner that a MOS non-single-crystal silicon thin-film transistor including a non-single-crystal silicon thin film made of polycrystalline silicon, a MOS single-crystal silicon thin-film transistor including a single-crystal silicon thin film, and a metal wiring are provided on an insulating substrate. With this arrangement, (i) a semiconductor device in which a non-single-crystal silicon thin film and a single-crystal silicon thin-film device are formed and high-performance systems are integrated, (ii) a method of manufacturing the semiconductor device, and (iii) a single-crystal silicon substrate for forming the single-crystal silicon thin-film device of the semiconductor device are obtained.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: March 24, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yutaka Takafuji, Takashi Itoga
  • Patent number: 7488980
    Abstract: A relaying pad is formed in a predetermined portion in an insulation layer of the single-crystal thin film device, in a region where the single-crystal thin film device is formed. The relaying pad is for providing connection wiring through the insulator substrate. With this configuration it is possible to prevent an increase in an aspect ratio of a contact hole formed in an insulation layer in a region in which a transferred device is formed, the semiconductor device including a substrate on which the transferred device and a deposited device coexist.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: February 10, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yutaka Takafuji, Takashi Itoga, Yasuyuki Ogawa
  • Publication number: 20070235734
    Abstract: On an SOI substrate, a hydrogen ion implantation section in which distribution of hydrogen ions peaks in a BOX layer (buried oxide film layer), and a single-crystal silicon thin-film transistor are formed. Then this SOI substrate is bonded with an insulating substrate. Subsequently, the SOI substrate is cleaved at the hydrogen ion implantation section by carrying out heat treatment, so that an unnecessary part of the SOI substrate is removed, Furthermore, the BOX layer remaining on the single-crystal silicon thin-film transistor is removed by etching. With this, it is possible to from a single-crystal silicon thin-film device on an insulating substrate, without using an adhesive. Moreover, it is possible to provide a semiconductor device which has no surface damage and includes a single-crystal silicon thin film which is thin and uniform in thickness.
    Type: Application
    Filed: June 5, 2007
    Publication date: October 11, 2007
    Inventors: Yutaka Takafuji, Takashi Itoga
  • Patent number: 7262464
    Abstract: A semiconductor device includes a substrate with an insulating surface and a single crystal semiconductor layer, which is bonded to the insulating surface of the substrate. The device further includes a first insulating layer, which is provided between the insulating surface of the substrate and the single crystal semiconductor layer, and a second insulating layer, which has been deposited on the entire insulating surface of the substrate except an area in which the first insulating layer is present.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: August 28, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yutaka Takafuji, Takashi Itoga
  • Patent number: 7253040
    Abstract: An insulating substrate is bonded to a monocrystalline Si substrate that includes a monocrystalline Si thin film transistor and a hydrogen ion implanted portion. After depositing an amorphous Si thin film, the amorphous Si thin film is modified into a polycrystalline Si thin film by irradiation of the excimer laser. In laser irradiation, the irradiation of the laser beam on the monocrystalline Si thin film transistor is blocked either by inserting a mask in part of the optical path of the laser beam, or by irradiating the laser beam before unnecessary portions of the monocrystalline Si substrate is detached. In this way, the irradiation of the laser beam for forming the polycrystalline Si thin film will not damage the monocrystalline Si thin film transistor in a semiconductor device in which the monocrystalline Si thin film transistor, which has been transferred, and the polycrystalline Si thin film transistor, which has been formed on the insulating substrate, are formed on the insulating substrate.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: August 7, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takashi Itoga, Yutaka Takafuji, Yoshihiro Yamamoto
  • Patent number: 7244990
    Abstract: On an SOI substrate, a hydrogen ion implantation section in which distribution of hydrogen ions peaks in a BOX layer (buried oxide film layer), and a single-crystal silicon thin-film transistor are formed. Then this SOI substrate is bonded with an insulating substrate. Subsequently, the SOI substrate is cleaved at the hydrogen ion implantation section by carrying out heat treatment, so that an unnecessary part of the SOI substrate is removed, Furthermore, the BOX layer remaining on the single-crystal silicon thin-film transistor is removed by etching. With this, it is possible to from a single-crystal silicon thin-film device on an insulating substrate, without using an adhesive. Moreover, it is possible to provide a semiconductor device which has no surface damage and includes a single-crystal silicon thin film which is thin and uniform in thickness.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: July 17, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yutaka Takafuji, Takashi Itoga
  • Publication number: 20070063281
    Abstract: A polycrystalline Si thin film and a single crystal Si thin film are formed on an SiO2 film deposited on an insulating substrate. A polycrystalline Si layer is grown by thermally crystallizing an amorphous Si thin film so as to form the polycrystalline Si thin film. A single crystal Si substrate, having (a) an SiO2 film thereon and (b) a hydrogen ion implantation portion therein, is bonded to an area of the polycrystalline Si thin film that has been subjected to etching removal, and is subjected to a heating process. Then, the single crystal Si substrate is divided at the hydrogen ion implantation portion in an exfoliating manner, so as to form the single crystal Si thin film. As a result, it is possible to provide a large-size semiconductor device, having the single crystal Si thin film, whose property is stable, at a low cost.
    Type: Application
    Filed: August 11, 2006
    Publication date: March 22, 2007
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Yutaka Takafuji, Takashi Itoga
  • Patent number: 7119365
    Abstract: A polycrystalline Si thin film and a single crystal Si thin film are formed on an SiO2 film deposited on an insulating substrate. A polycrystalline Si layer is grown by thermally crystallizing an amorphous Si thin film so as to form the polycrystalline Si thin film. A single crystal Si substrate, having (a) an SiO2 film thereon and (b) a hydrogen ion implantation portion therein, is bonded to an area of the polycrystalline Si thin film that has been subjected to etching removal, and is subjected to a heating process. Then, the single crystal Si substrate is divided at the hydrogen ion implantation portion in an exfoliating manner, so as to form the single crystal Si thin film. As a result, it is possible to provide a large-size semiconductor device, having the single crystal Si thin film, whose property is stable, at a low cost.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: October 10, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yutaka Takafuji, Takashi Itoga
  • Publication number: 20050236626
    Abstract: In a semiconductor device including an insulative substrate and a thin film device formed thereon, a thin film transistor having a non-single crystalline silicon thin film and a transistor having a single crystalline silicon thin film are intermixed, and a gate electrode film of the thin film transistor having single crystalline silicon is made of a material including a metal whose mass number is larger than that of silicon or a compound containing the metal.
    Type: Application
    Filed: March 24, 2005
    Publication date: October 27, 2005
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Yutaka Takafuji, Takashi Itoga, Steven Droes, Masao Moriguchi
  • Publication number: 20050173761
    Abstract: A semiconductor device includes a substrate with an insulating surface and a single crystal semiconductor layer, which is bonded to the insulating surface of the substrate. The device further includes a first insulating layer, which is provided between the insulating surface of the substrate and the single crystal semiconductor layer, and a second insulating layer, which has been deposited on the entire insulating surface of the substrate except an area in which the first insulating layer is present.
    Type: Application
    Filed: February 1, 2005
    Publication date: August 11, 2005
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Yutaka Takafuji, Takashi Itoga
  • Publication number: 20050067619
    Abstract: A relaying pad is formed in a predetermined portion in an insulation layer of the single-crystal thin film device, in a region where the single-crystal thin film device is formed. The relaying pad is for providing connection wiring through the insulator substrate. With this configuration it is possible to prevent an increase in an aspect ratio of a contact hole formed in an insulation layer in a region in which a transferred device is formed, the semiconductor device including a substrate on which the transferred device and a deposited device coexist.
    Type: Application
    Filed: September 15, 2004
    Publication date: March 31, 2005
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Yutaka Takafuji, Takashi Itoga, Yasuyuki Ogawa