Patents by Inventor Takashi Minakami

Takashi Minakami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11262284
    Abstract: A particle counter includes: a multi-flow cell with flow passages arrayed in a first direction and having a section including a detection region, for detecting a particle, formed when the flow passage is irradiated with irradiation light; a light receiving optical system configured to receive emitted light generated from a particle contained in sample fluid flowing in the at least one flow passage and passing through the detection region; an optical axis moving unit configured to move an optical axis of the irradiation light and an optical axis of the emitted light in the first direction; and a counter configured to count the particle for each particle size based on an intensity of the emitted light.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: March 1, 2022
    Assignee: RION Co., Ltd.
    Inventors: Tomonobu Matsuda, Takashi Minakami, Daisuke Sakaue, Daisuke Shinozaki
  • Patent number: 11009445
    Abstract: An in-fluid floating substance measurement flow cell includes: a main body having at least a predetermined portion made of a material having translucency; and a flow passage formed inside the main body, having both end openings at an outer surface of the main body in a substantially identical direction, and configured such that fluid flows in the flow passage. The flow passage has a predetermined section arranged between two opposing flat wall surfaces facing each other, and the predetermined portion includes the predetermined section.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: May 18, 2021
    Assignee: RION Co., Ltd.
    Inventors: Tomonobu Matsuda, Takashi Minakami, Daisuke Sakaue, Daisuke Shinozaki
  • Publication number: 20200240893
    Abstract: An in-fluid floating substance measurement flow cell includes: a main body having at least a predetermined portion made of a material having translucency; and a flow passage formed inside the main body, having both end openings at an outer surface of the main body in a substantially identical direction, and configured such that fluid flows in the flow passage. The flow passage has a predetermined section arranged between two opposing flat wall surfaces facing each other, and the predetermined portion includes the predetermined section.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 30, 2020
    Inventors: Tomonobu MATSUDA, Takashi MINAKAMI, Daisuke SAKAUE, Daisuke SHINOZAKI
  • Publication number: 20200240890
    Abstract: A particle counter includes: a multi-flow cell with flow passages arrayed in a first direction and having a section including a detection region, for detecting a particle, formed when the flow passage is irradiated with irradiation light; a light receiving optical system configured to receive emitted light generated from a particle contained in sample fluid flowing in the at least one flow passage and passing through the detection region; an optical axis moving unit configured to move an optical axis of the irradiation light and an optical axis of the emitted light in the first direction; and a counter configured to count the particle for each particle size based on an intensity of the emitted light.
    Type: Application
    Filed: January 20, 2020
    Publication date: July 30, 2020
    Inventors: Tomonobu MATSUDA, Takashi MINAKAMI, Daisuke SAKAUE, Daisuke SHINOZAKI
  • Patent number: 9823190
    Abstract: A particle counter for chemical solution in this disclosure uses a flow cell through which a chemical solution including particles flows, a laser light, and a light-receiving element array. Scattered light from the particles passing through a detection region on an optical path of the laser light in the flow cell is condensed to the light-receiving element array. The laser light in the center of the detection region has an energy density of 3×108 mW/cm2 or more. Each of plural light-receiving elements (a) is larger in length and width than a spot diameter of the scattered light, and (b) receives the scattered light from a region with a size of 760 ?m2 or less included in the detection region. The signal processing unit counts the particles passing through the detection region by use of a threshold corresponding to the smallest measurable particle size of 0.03 ?m.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: November 21, 2017
    Assignee: RION CO., LTD.
    Inventors: Takashi Minakami, Masaki Shimmura, Tomonobu Matsuda
  • Publication number: 20160091407
    Abstract: A particle counter for chemical solution in this disclosure uses a flow cell through which a chemical solution including particles flows, a laser light, and a light-receiving element array. Scattered light from the particles passing through a detection region on an optical path of the laser light in the flow cell is condensed to the light-receiving element array. The laser light in the center of the detection region has an energy density of 3×108 mW/cm2 or more. Each of plural light-receiving elements (a) is larger in length and width than a spot diameter of the scattered light, and (b) receives the scattered light from a region with a size of 760 ?m2 or less included in the detection region. The signal processing unit counts the particles passing through the detection region by use of a threshold corresponding to the smallest measurable particle size of 0.03 ?m.
    Type: Application
    Filed: September 21, 2015
    Publication date: March 31, 2016
    Applicant: RION CO., LTD.
    Inventors: Takashi MINAKAMI, Masaki SHIMMURA, Tomonobu MATSUDA
  • Patent number: 6813303
    Abstract: According to the present invention, there is provided a light scattering type particle detector, using a semiconductor laser as a light source, for detecting particles contained in sample fluid which defines a flow path, wherein laser light generated from the semiconductor laser is irradiated to irradiate a region of the flow path with a concave mirror and thereby a particle detecting region is defined. According to the present invention, there is also provided a laser oscillator wherein the optical axis of a semiconductor laser for generating pumping laser light has a predetermined angle with respect to the optical axis of a laser medium for irradiating laser light by pumping. Using such a laser oscillator, laser light irradiated from the laser oscillator is condensed to irradiate a region of a flow path defined by sample fluid, and thereby a particle detecting region is defined. Particles contained in the particle detecting region are detected by receiving scattered light with a light receiving portion.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: November 2, 2004
    Assignee: Rion Co., Ltd.
    Inventors: Tomonobu Matsuda, Takashi Minakami, Kenji Sasaki, Tsutomu Nakajima
  • Patent number: 6768545
    Abstract: A particle detector comprising an optical cavity constructed of a solid-state laser which is optically pumped by pumping light generated from a pumping light source and a reflecting mirror, the optical cavity generating laser light, a flow path defined by sample fluid, and a particle detecting region where the laser light La is radiated upon the flow path, wherein particles passing through the particle detecting region are detected by receiving light scattered from the laser light due to the particles passing through the particle detecting region, and wherein the laser light generated within the optical cavity has a multi transverse mode, the cross sectional shape of which has a different length in the longitudinal direction and the transverse direction.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: July 27, 2004
    Assignee: Rion Co., Ltd.
    Inventors: Tomonobu Matsuda, Takashi Minakami
  • Publication number: 20040011974
    Abstract: According to the present invention, there is provided a light scattering type particle detector, using a semiconductor laser as a light source, for detecting particles contained in sample fluid which defines a flow path, wherein laser light generated from the semiconductor laser is irradiated to irradiate a region of the flow path with a concave mirror and thereby a particle detecting region is defined.
    Type: Application
    Filed: January 24, 2002
    Publication date: January 22, 2004
    Applicant: Rion Co., Ltd.
    Inventors: Tomonobu Matsuda, Takashi Minakami, Kenji Sasaki, Tsutomu Nakajima
  • Publication number: 20030223062
    Abstract: There is provided a particle detector comprising an optical cavity constructed of a solid-state laser which is optically pumped by pumping light generated from a pumping light source and a reflecting mirror, the optical cavity generating laser light, a flow path defined by sample fluid, and a particle detecting region where the laser light La is radiated upon the flow path, wherein particles passing through the particle detecting region are detected by receiving light scattered from the laser light due to the particles passing through the particle detecting region, and wherein the laser light generated within the optical cavity has a multi transverse mode, the cross section shape of which has a different length in the longitudinal direction and the transverse direction.
    Type: Application
    Filed: September 11, 2002
    Publication date: December 4, 2003
    Applicant: Rion Co., Ltd.
    Inventors: Tomonobu Matsuda, Takashi Minakami