Patents by Inventor Takashi Shige

Takashi Shige has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9109449
    Abstract: A turbine rotor has suitable strength and toughness without causing soaring manufacturing costs and prolonged manufacturing time. The turbine rotor is constructed by welding a rotor member for high temperature made of high Cr steel to a rotor member for low temperature made of low Cr steel. The high temperature rotor member is formed from high Cr steel of which the nitrogen content is 0.02% or higher by mass %. A filler material welds the high temperature rotor member and the low temperature rotor member together, and is a 9% Cr-based filler material of which the nitrogen content is 0.025% or lower by mass %.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: August 18, 2015
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Takashi Shige, Shin Nishimoto, Kimmitsu Maruyama, Kenji Kawasaki, Yoshiaki Fukunaga, Takashi Nakano
  • Patent number: 8911880
    Abstract: A turbine rotor which is composed by connecting Ni-based alloy and heat resisting steel such as 12-Cr steel by welding to be able to ensure strength of welded parts and can be used under steam conditions of 700° C. class and method of manufacturing the rotor are also provided. The rotor of the rotating machine into which working fluid of 650° C. or higher is introduced, the rotor being composed of a plurality of members connected by welding such that material of each member is different in accordance with temperature of working fluid which flows contacting the members, wherein the first member(s) is formed from Ni-based alloy having mean linear expansion coefficient of 12.4×10?6/° C.˜14.5×10?6/° C., preferably 14.0×10?6/° C. or smaller within a temperature range from a room temperature to 700° C. and second member(s) is formed from high-chrome steels, and the rotor is composed such that the first member(s) formed from Ni-base alloy is located in a portion which contact to the working fluid of 650° C.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: December 16, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shin Nishimoto, Takashi Nakano, Yoshinori Tanaka, Tatsuaki Fujikawa, Kenji Kawasaki, Yoshikuni Kadoya, Ryuichi Yamamoto, Yuichi Hirakawa, Takashi Shige
  • Publication number: 20130343893
    Abstract: A turbine rotor related to the present invention includes a first member, and a second member joined to the first member, wherein the first and the second members are extended in an axial direction of the turbine rotor, a groove portion for welding is formed at a border between the first and the second members and penetrates the bottom portion of the groove portion, and a gas-introducing hole for introducing inert gas inside the turbine rotor is covered by welding.
    Type: Application
    Filed: March 22, 2012
    Publication date: December 26, 2013
    Inventors: Kenji Kawasaki, Ryuichi Yamamoto, Ikuo Nakamura, Shin Nishimoto, Seiichi Kawaguchi, Takashi Shige
  • Patent number: 8603265
    Abstract: There are provided an Ni-based alloy high-chrome steel structure and its manufacturing method capable of joining Ni-based alloys and high-chrome steels by welding, and performing suitable heat treatment, thereby maintaining the strength in the joints.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: December 10, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shin Nishimoto, Takashi Nakano, Yoshinori Tanaka, Tatsuaki Fujikawa, Kenji Kawasaki, Yoshikuni Kadoya, Ryuichi Yamamoto, Yuichi Hirakawa, Takashi Shige
  • Publication number: 20110206525
    Abstract: There are provided a turbine rotor having suitable strength and toughness without causing soaring manufacturing costs and prolonged manufacturing time, and a manufacturing method of the turbine rotor. In a turbine rotor constructed by welding a rotor member for high temperature made of high Cr steel, and a rotor member for low temperature made of low Cr steel, the high temperature rotor member is formed from high Cr steel of which the nitrogen content is 0.02% or higher by mass %, and a filler material which welds the high temperature rotor member and the low temperature rotor member together is a 9% Cr-based filler material of which the nitrogen content is 0.025% or lower by mass %.
    Type: Application
    Filed: July 15, 2009
    Publication date: August 25, 2011
    Inventors: Takashi Shige, Shin Nishimoto, Kimmitsu Maruyama, Kenji Kawasaki, Yoshiaki Fukunaga, Takashi Nakano
  • Publication number: 20110126945
    Abstract: There are provided an Ni-based alloy high-chrome steel structure and its manufacturing method capable of joining Ni-based alloys and high-chrome steels by welding, and performing suitable heat treatment, thereby maintaining the strength in the joints.
    Type: Application
    Filed: June 11, 2009
    Publication date: June 2, 2011
    Inventors: Shin Nishimoto, Takashi Nakano, Yoshinori Tanaka, Tatsuaki Fujikawa, Kenji Kawasaki, Yoshikuni Kadoya, Ryuichi Yamamoto, Yuichi Hirakawa, Takashi Shige
  • Publication number: 20100296938
    Abstract: A turbine rotor which is composed by connecting Ni-based alloy and heat resisting steel such as 12-Cr steel by welding to be able to ensure strength of welded parts and can be used under steam conditions of 700° C. class and method of manufacturing the rotor are also provided. The rotor of the rotating machine into which working fluid of 650° C. or higher is introduced, the rotor being composed of a plurality of members connected by welding such that material of each member is different in accordance with temperature of working fluid which flows contacting the members, wherein the first member(s) is formed from Ni-based alloy having mean linear expansion coefficient of 12.4×10?6/° C.˜14.5×10?6/° C., preferably 14.0×10?6/° C. or smaller within a temperature range from a room temperature to 700° C. and second member(s) is formed from high-chrome steels, and the rotor is composed such that the first member(s) formed from Ni-base alloy is located in a portion which contact to the working fluid of 650° C.
    Type: Application
    Filed: June 11, 2009
    Publication date: November 25, 2010
    Inventors: Shin Nishimoto, Takashi Nakano, Yoshinori Tanaka, Tatsuaki Fujikawa, Kenji Kawasaki, Yoshikuni Kadoya, Ryuichi Yamamoto, Yuichi Hirakawa, Takashi Shige
  • Publication number: 20100202891
    Abstract: The object of the invention is to provide a low-pressure turbine rotor capable of maintaining mechanical strength characteristics, and without problems in terms of quality without increasing manufacturing costs and manufacturing days, even if high temperature steam is introduced into the low-pressure turbine. A low-pressure turbine rotor used in a steam turbine facility including a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine includes a member formed from 1CrMoV steel, 2.25CrMoV steel, or 10CrMoV steel arranged on a steam inlet side, and a member formed from 3.5Ni steel arranged on a steam outlet side, which are joined together by welding. Alternatively, the member arranged on the steam inlet side and the member arranged on the steam outlet side, both of which are formed from 3.5Ni steel, are joined together by welding, and the member arranged on the steam inlet side is made of low-impurity 3.5Ni steel containing, by weight %, Si: 0.1% or less, Mn: 0.
    Type: Application
    Filed: July 30, 2009
    Publication date: August 12, 2010
    Inventors: Shin Nishimoto, Yoshinori Tanaka, Ryuichi Yamamoto, Kenji Kawasaki, Takashi Shige
  • Patent number: 6990166
    Abstract: A primary lid is set in a top opening of a vessel body that contains radioactive substance, and closes the top opening. The peripheral edge portion of the primary lid is welded to the inner peripheral surface of the vessel body. As the primary lid is welded, steam in the vessel body is discharged to the outside through a discharge hole in the primary lid, and a shield gas is filled into or run through a space in the outer peripheral portion of the primary lid, so as to prevent the steam from flowing into the welding portion.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 24, 2006
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kenichi Matsunaga, Ganji Abe, Kazuo Murakami, Koichi Ue, Takashi Shige, Etsuryo Kita, Shizuo Inoue, Tsuneo Mandai
  • Publication number: 20050246893
    Abstract: A turbine rotor repair method capable of forming a repair part by applying a deposit welding to a rotor material, the deposit welding being a thin deposit welding with a high deposition rate, wherein the repair part is formed by stacking beads by the thin deposit welding, and the thin deposit welding with the high deposition rate is performed by a submerged arc welding using a conductive flux.
    Type: Application
    Filed: November 25, 2003
    Publication date: November 10, 2005
    Inventors: Yoshiaki Fukunaga, Takashi Shige, Masahiko Yamashita, Hidenori Kanki
  • Publication number: 20050105673
    Abstract: A primary lid is set in a top opening of a vessel body that contains radioactive substance, and closes the top opening. The peripheral edge portion of the primary lid is welded to the inner peripheral surface of the vessel body. As the primary lid is welded, steam in the vessel body is discharged to the outside through a discharge hole in the primary lid, and a shield gas is filled into or run through a space in the outer peripheral portion of the primary lid, so as to prevent the steam from flowing into the welding portion.
    Type: Application
    Filed: September 4, 2003
    Publication date: May 19, 2005
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kenichi Matsunaga, Ganji Abe, Kazuo Murakami, Koichi Ue, Takashi Shige, Etsuryo Kita, Shizuo Inoue, Tsuneo Mandai
  • Patent number: 6671344
    Abstract: A primary lid is set in a top opening of a vessel body that contains radioactive substance, and closes the top opening. The peripheral edge portion of the primary lid is welded to the inner peripheral surface of the vessel body. As the primary lid is welded, steam in the vessel body is discharged to the outside through a discharge hole in the primary lid, and a shield gas is filled into or run through a space in the outer peripheral portion of the primary lid, so as to prevent the steam from flowing into the welding portion.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: December 30, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kenichi Matsunaga, Ganji Abe, Kazuo Murakami, Koichi Ue, Takashi Shige, Etsuryo Kita, Shizuo Inoue, Tsuneo Mandai
  • Publication number: 20030002614
    Abstract: A primary lid is set in a top opening of a vessel body that contains radioactive substance, and closes the top opening. The peripheral edge portion of the primary lid is welded to the inner peripheral surface of the vessel body. As the primary lid is welded, steam in the vessel body is discharged to the outside through a discharge hole in the primary lid, and a shield gas is filled into or run through a space in the outer peripheral portion of the primary lid, so as to prevent the steam from flowing into the welding portion.
    Type: Application
    Filed: June 25, 2002
    Publication date: January 2, 2003
    Inventors: Kenichi Matsunaga, Ganji Abe, Kazuo Murakami, Koichi Ue, Takashi Shige, Etsuryo Kita, Shizuo Inoue, Tsuneo Mandai
  • Patent number: 6190785
    Abstract: This invention relates to a spray coating powder material which, when applied to gas turbines using a crude low-quality fuel oil as fuel, has sufficiently higher corrosion resistance to sulfur, vanadium, sodium and other substances that accelerate corrosion in a high-temperature service environment, than conventional materials such as Ni-50 Cr and MCrAlY materials, as well as high-temperature components coated therewith. Specifically, this invention relates to a spray coating powder material comprising, on a weight percentage basis, greater than 45% and up to 60% of chromium, 5 to 15% of aluminum, 0.5 to 10% of zirconium, and the balance comprising cobalt or iron, or both, and incidental impurities, as well as high-temperature components coated therewith. This material can yield a sprayed coating having high corrosion resistance to sulfur, vanadium, sodium and other substances that accelerate corrosion in a high-temperature service environment.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: February 20, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshio Yonezawa, Koji Fujimoto, Takashi Shige, Ikumasa Koshiro, Koji Takahashi