Patents by Inventor Takashi Uemori

Takashi Uemori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230160023
    Abstract: Provided is a method for detecting an FNA virus in a biological sample, the method comprising: (1) a step for preparing a sample solution containing a biological sample, a protease, a nucleic acid that does not become a target of nucleic acid amplification, and at least one additive selected from the group consisting of chaotropic reagents and surfactants; (2) a step for preparing a nucleic acid amplification reaction solution containing the sample solution prepared in step (1) and containing a polypeptide having reverse transcriptase activity and DMA polymerase activity or a polypeptide having reverse transcription activity and a polypeptide having DNA polymerase activity; and (3) a step for amplifying a nucleic acid of the RNA virus in the reaction solution prepared in step (2).
    Type: Application
    Filed: April 28, 2021
    Publication date: May 25, 2023
    Applicant: TAKARA BIO INC.
    Inventors: Takashi UEMORI, Takehiro SAGARA, Miwa AKITOMO, Kensuke SAITO
  • Publication number: 20230133071
    Abstract: The present invention provides a GG-specific mismatch endonuclease variant, a TT-specific mismatch endonuclease variant, and a GT/TG-specific mismatch endonuclease variant. The present invention also provides a mismatch specific cleaving reaction using said variant, a method for removing errors in a nucleic acid amplification reaction using a mismatch nuclease, a method for suppressing amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single base polymorphic mutation using said suppression method.
    Type: Application
    Filed: March 18, 2021
    Publication date: May 4, 2023
    Applicants: TAKARA BIO INC., EDUCATIONAL CORPORATION KANSAI BUNRI SOUGOUGAKUEN, KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
    Inventors: Hiroyuki MATSUMOTO, Takashi UEMORI, Tsuyoshi SHIRAI, Yoshizumi ISHINO, Sonoko ISHINO
  • Patent number: 11572580
    Abstract: The present invention pertains to: an oligonucleotide preservation method; and a kit comprising an oligonucleotide. The present invention provides a method for stably preserving an oligonucleotide-containing solution by adding a nucleic acid-binding protein to said oligonucleotide-containing solution in advance.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: February 7, 2023
    Assignee: TAKARA BIO INC.
    Inventors: Miwa Akitomo, Takashi Uemori
  • Patent number: 11220677
    Abstract: Provided are: a reverse transcriptase mutant including an amino acid mutation at a position corresponding to position 55 of the amino acid sequence of wild-type reverse transcriptase derived from the Moloney murine leukemia virus, wherein the reverse transcriptase mutant is characterized in that the amino acid mutation is a substitution from threonine to another amino acid, and the other amino acid is selected from the group consisting of amino acids having a nonpolar aliphatic side chain and amino acids having a polar acidic functional group side chain; a nucleic acid that encodes the mutant; a method for producing the mutant and the nucleic acid that encodes the mutant; a method for synthesizing cDNA in which the mutant is used; and a composition and kit including the mutant.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: January 11, 2022
    Assignee: TAKARA BIO INC.
    Inventors: Kazuhiko Ishikawa, Takashi Uemori, Nariaki Takatsu
  • Publication number: 20210277367
    Abstract: Provided are: a reverse transcriptase mutant including an amino acid mutation at a position corresponding to position 55 of the amino acid sequence of wild-type reverse transcriptase derived from the Moloney murine leukemia virus, wherein the reverse transcriptase mutant is characterized in that the amino acid mutation is a substitution from threonine to another amino acid, and the other amino acid is selected from the group consisting of amino acids having a nonpolar aliphatic side chain and amino acids having a polar acidic functional group side chain; a nucleic acid that encodes the mutant; a method for producing the mutant and the nucleic acid that encodes the mutant; a method for synthesizing cDNA in which the mutant is used; and a composition and kit including the mutant.
    Type: Application
    Filed: December 13, 2017
    Publication date: September 9, 2021
    Applicant: TAKARA BIO INC.
    Inventors: Kazuhiko ISHIKAWA, Takashi UEMORI, Nariaki TAKATSU
  • Publication number: 20210222137
    Abstract: Provided are: a DNA polymerase mutant having reverse transcriptase activity, the DNA polymerase mutant including a sequence consisting of twelve specific amino acids A1-A12, wherein the DNA polymerase mutant having reverse transcriptase activity is characterized in that the A3 and/or A10 amino acid is substituted by a basic amino acid residue different from that prior to the introduction of mutation; a kit and a composition including the DNA polymerase; a method for producing the DNA polymerase; and a method for modifying an existing DNA polymerase having reverse transcriptase activity.
    Type: Application
    Filed: July 3, 2019
    Publication date: July 22, 2021
    Applicant: TAKARA BIO INC.
    Inventors: Takashi UEMORI, Hiroyuki MATSUMOTO, Kensuke SAITO, Miwa AKITOMO
  • Patent number: 11046939
    Abstract: The present invention relates to a Thermus aquaticus (Taq) polymerase having a strand displacement activity in which an amino acid residue in a template DNA binding site of the DNA polymerase is substituted with an amino acid to increase a total charge in the site, a nucleic acid encoding the polymerase, a vector containing the nucleic acid, a transformant containing the vector containing the nucleic acid or the nucleic acid, a method for producing the polymerase, a method for amplifying nucleic acids utilizing the polymerase, and a kit containing the polymerase. According to the present invention, a DNA polymerase having a high thermostability, capable of efficiently replicating a long-strand of a template DNA, and having a strong strand displacement activity is provided.
    Type: Grant
    Filed: November 24, 2016
    Date of Patent: June 29, 2021
    Assignees: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, TAKARA BIO INC.
    Inventors: Yoshizumi Ishino, Sonoko Ishino, Takeshi Yamagami, Takashi Uemori, Nariaki Takatsu
  • Publication number: 20210164018
    Abstract: The present invention pertains to: an oligonucleotide preservation method; and a kit comprising an oligonucleotide. The present invention provides a method for stably preserving an oligonucleotide-containing solution by adding a nucleic acid-binding protein to said oligonucleotide-containing solution in advance.
    Type: Application
    Filed: June 6, 2018
    Publication date: June 3, 2021
    Applicant: TAKARA BIO INC.
    Inventors: Miwa AKITOMO, Takashi UEMORI
  • Patent number: 10975415
    Abstract: A polypeptide having a mismatch endonuclease activity of recognizing a mismatch and cleaving the mismatch; a mismatch-specific cleavage reaction using the polypeptide; a method for removing an error in a nucleic acid amplification reaction utilizing the polypeptide; a method for inhibiting the amplification of a nucleic acid comprising a specific nucleotide sequence during a nucleic acid amplification reaction; and a method for detecting a nucleic acid having a single-nucleotide polymorphism mutation utilizing the inhibition method.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: April 13, 2021
    Assignees: TAKARA BIO INC., KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, EDUCATIONAL CORPORATION KANSAI BUNRI SOUGOUGAKUEN
    Inventors: Takashi Uemori, Yoshizumi Ishino, Takehiro Sagara, Sonoko Ishino, Takeshi Yamagami, Tsuyoshi Shirai
  • Patent number: 10760074
    Abstract: A composition for use in amplifying cDNA synthesized by a reverse transcription reaction and detecting RNA that serves as a template of the reverse transcription reaction, the composition containing a thermostable DNA polymerase, a thermostable ribonuclease H, and an intercalating dye. Since the composition of the present invention can suppress the influences to the nucleic acid amplification reaction by RNA that serves as a template for cDNA synthesis, the composition is useful in the detection of RNA, and more useful in quantification of RNA having a desired sequence by real-time RT-PCR.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: September 1, 2020
    Assignee: TAKARA BIO INC.
    Inventors: Kanako Usui, Takashi Uemori, Hiroyuki Mukai, Ikunoshin Kato
  • Patent number: 10294465
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: May 21, 2019
    Assignee: TAKARA BIO INC.
    Inventors: Kiyoyuki Matsumura, Nariaki Takatsu, Takashi Uemori, Hiroyuki Mukai
  • Patent number: 10280412
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: May 7, 2019
    Assignee: TAKARA BIO INC.
    Inventors: Kiyoyuki Matsumura, Nariaki Takatsu, Takashi Uemori, Hiroyuki Mukai
  • Publication number: 20190100736
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 4, 2019
    Applicant: TAKARA BIO INC.
    Inventors: Kiyoyuki MATSUMURA, Nariaki TAKATSU, Takashi UEMORI, Hiroyuki MUKAI
  • Publication number: 20190085307
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 21, 2019
    Applicant: TAKARA BIO INC.
    Inventors: Kiyoyuki MATSUMURA, Nariaki TAKATSU, Takashi UEMORI, Hiroyuki MUKAI
  • Publication number: 20190055527
    Abstract: The present invention relates to a fusion polypeptide containing, in a direction of from an N-terminal side to a C-terminal side, one or more peptides which bind to a PCNA, and a polypeptide having a DNA polymerase activity; a method for amplifying nucleic acids using the polypeptide; and a composition and a kit, containing the polypeptide. According to the present invention, it is made possible to amplify a long-strand DNA in a short time in amplifying nucleic acids in the presence of PCNA even with a Pol I-type DNA polymerase.
    Type: Application
    Filed: November 24, 2016
    Publication date: February 21, 2019
    Applicants: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, TAKARA BIO INC.
    Inventors: Yoshizumi ISHINO, Sonoko ISHINO, Takeshi YAMAGAMI, Takashi UEMORI, Nariaki TAKATSU
  • Patent number: 10196618
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: February 5, 2019
    Assignee: TAKARA BIO INC.
    Inventors: Kiyoyuki Matsumura, Nariaki Takatsu, Takashi Uemori, Hiroyuki Mukai
  • Publication number: 20190017037
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 17, 2019
    Applicant: TAKARA BIO INC.
    Inventors: Kiyoyuki MATSUMURA, Nariaki TAKATSU, Takashi UEMORI, Hiroyuki MUKAI
  • Publication number: 20180346889
    Abstract: The present invention relates to a Thermus aquaticus (Taq) polymerase having a strand displacement activity in which an amino acid residue in a template DNA binding site of the DNA polymerase is substituted with an amino acid to increase a total charge in the site, a nucleic acid encoding the polymerase, a vector containing the nucleic acid, a transformant containing the vector containing the nucleic acid or the nucleic acid, a method for producing the polymerase, a method for amplifying nucleic acids utilizing the polymerase, and a kit containing the polymerase. According to the present invention, a DNA polymerase having a high thermostability, capable of efficiently replicating a long-strand of a template DNA, and having a strong strand displacement activity is provided.
    Type: Application
    Filed: November 24, 2016
    Publication date: December 6, 2018
    Applicants: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, TAKARA BIO INC.
    Inventors: Yoshizumi ISHINO, Sonoko ISHINO, Takeshi YAMAGAMI, Takashi UEMORI, Nariaki TAKATSU
  • Patent number: 10131890
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: November 20, 2018
    Assignee: TAKARA BIO INC.
    Inventors: Kiyoyuki Matsumura, Nariaki Takatsu, Takashi Uemori, Hiroyuki Mukai
  • Patent number: 10093968
    Abstract: Provided are the following: a method, for improving reactivity of an acid synthesis reaction, comprising a step for adding an ?-amino acid to a reaction solution; a composition, for a nucleic acid synthesis reaction, comprising DNA polymerase, reaction buffer, at least one primer, at least one deoxyribonucleoside triphosphate, and an ?-amino acid; and a reaction buffer, for a nucleic acid synthesis reaction, comprising an ?-amino acid.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: October 9, 2018
    Assignee: TAKARA BIO INC.
    Inventors: Kiyoyuki Matsumura, Takashi Uemori, Hiroyuki Mukai