Patents by Inventor Takashi W. Orimoto

Takashi W. Orimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9379120
    Abstract: High-density semiconductor memory utilizing metal control gate structures and air gap electrical isolation between discrete devices in these types of structures are provided. During gate formation and definition, etching the metal control gate layer(s) is separated from etching the charge storage layer to form protective sidewall spacers along the vertical sidewalls of the metal control gate layer(s). The sidewall spacers encapsulate the metal control gate layer(s) while etching the charge storage material to avoid contamination of the charge storage and tunnel dielectric materials. Electrical isolation is provided, at least in part, by air gaps that are formed in the row direction and/or air gaps that are formed in the column direction.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: June 28, 2016
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, Tuan Pham, Hiroyuki Kinoshita, Yuan Zhang, Henry Chin, James K Kai, Takashi W Orimoto, George Matamis, Henry Chien
  • Patent number: 8877586
    Abstract: A process for forming reversible resistance-switching memory cells having resistance-switching nano-particles which provide a reduced contact area to top and bottom electrodes of the memory cells, thereby limiting a peak current. Recesses are formed in a layered semiconductor material above the bottom electrodes, and one or more coatings of nano-particles are applied. The nano-particles self-assemble in the recesses so that they are positioned in a controlled manner. A top electrode material is then deposited. In one approach, the recesses are formed by spaced-apart trenches, and the nano-particles self-assemble along the spaced-apart trenches. In another approach, the recesses for each resistance-switching memory cell are separate from one another, and the resistance-switching memory cells are pillar-shaped. The coatings can be provided in one layer, or in multiple layers which are separated by an insulation layer.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: November 4, 2014
    Assignee: SanDisk 3D LLC
    Inventors: James K Kai, Takashi W Orimoto, Vinod R Purayath, George Matamis
  • Publication number: 20140213032
    Abstract: A process for forming reversible resistance-switching memory cells having resistance-switching nano-particles which provide a reduced contact area to top and bottom electrodes of the memory cells, thereby limiting a peak current. Recesses are formed in a layered semiconductor material above the bottom electrodes, and one or more coatings of nano-particles are applied. The nano-particles self-assemble in the recesses so that they are positioned in a controlled manner. A top electrode material is then deposited. In one approach, the recesses are formed by spaced-apart trenches, and the nano-particles self-assemble along the spaced-apart trenches. In another approach, the recesses for each resistance-switching memory cell are separate from one another, and the resistance-switching memory cells are pillar-shaped. The coatings can be provided in one layer, or in multiple layers which are separated by an insulation layer.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: SANDISK 3D LLC
    Inventors: James K. Kai, Takashi W. Orimoto, Vinod R. Purayath, George Matamis
  • Publication number: 20130334587
    Abstract: High-density semiconductor memory utilizing metal control gate structures and air gap electrical isolation between discrete devices in these types of structures are provided. During gate formation and definition, etching the metal control gate layer(s) is separated from etching the charge storage layer to form protective sidewall spacers along the vertical sidewalls of the metal control gate layer(s). The sidewall spacers encapsulate the metal control gate layer(s) while etching the charge storage material to avoid contamination of the charge storage and tunnel dielectric materials. Electrical isolation is provided, at least in part, by air gaps that are formed in the row direction and/or air gaps that are formed in the column direction.
    Type: Application
    Filed: July 22, 2013
    Publication date: December 19, 2013
    Applicant: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, Tuan Pham, Hiroyuki Kinoshita, Yuan Zhang, Henry Chin, James K. Kai, Takashi W. Orimoto, George Matamis, Henry Chien
  • Patent number: 8492224
    Abstract: High-density semiconductor memory utilizing metal control gate structures and air gap electrical isolation between discrete devices in these types of structures are provided. During gate formation and definition, etching the metal control gate layer(s) is separated from etching the charge storage layer to form protective sidewall spacers along the vertical sidewalls of the metal control gate layer(s). The sidewall spacers encapsulate the metal control gate layer(s) while etching the charge storage material to avoid contamination of the charge storage and tunnel dielectric materials. Electrical isolation is provided, at least in part, by air gaps that are formed in the row direction and/or air gaps that are formed in the column direction.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: July 23, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, Tuan Pham, Hiroyuki Kinoshita, Yuan Zhang, Henry Chin, James K. Kai, Takashi W. Orimoto, George Matamis, Henry Chien
  • Publication number: 20110309426
    Abstract: High-density semiconductor memory utilizing metal control gate structures and air gap electrical isolation between discrete devices in these types of structures are provided. During gate formation and definition, etching the metal control gate layer(s) is separated from etching the charge storage layer to form protective sidewall spacers along the vertical sidewalls of the metal control gate layer(s). The sidewall spacers encapsulate the metal control gate layer(s) while etching the charge storage material to avoid contamination of the charge storage and tunnel dielectric materials. Electrical isolation is provided, at least in part, by air gaps that are formed in the row direction and/or air gaps that are formed in the column direction.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Inventors: Vinod Robert Purayath, Tuan Pham, Hiroyuki Kinoshita, Yuan Zhang, Henry Chin, James K. Kai, Takashi W. Orimoto, George Matamis, Henry Chien