Patents by Inventor Takato Nakao

Takato Nakao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230197996
    Abstract: Redox flow battery 1 include cell frame 20 having recess 21, 22, at least one sheet-like electrode 11, 13 received in recess 21, 22, membrane 15 stacked on cell frame 20 to cover recess 21, 22, and bipolar current collecting member 40 penetrating cell frame 20 at recess 21, 22 and electrically connected to at least one electrode 11, 13, wherein cell frame 20 has flow channels 31-38 communicating with recess 21, 22 so as to allow a fluid containing an active material to flow through recess 21, 22 parallel to membrane 15, and wherein at least one electrode 11, 13 is disposed in recess 21, 22 at an angle where at least one electrode 11, 13 intersects membrane 15.
    Type: Application
    Filed: April 23, 2021
    Publication date: June 22, 2023
    Applicant: TOYO ENGINEERING CORPORATION
    Inventor: Takato Nakao
  • Publication number: 20220238904
    Abstract: Redox flow battery includes cell frame 20 including frame body 21 and bipolar plate 23, frame body 21 having rectangular opening 22 divided into a plurality of small openings 22a-22c along first direction X parallel to a longitudinal direction of opening 22, bipolar plate 23 divided into a plurality of regions 23a-23c, each of regions 23a-23c disposed within each of small openings 22a-22c to form a plurality of recesses, and electrode 11 divided into a plurality of regions 11a-11c, each of regions 11a-11c received in each of the recesses, wherein each of small openings 22a-22c has a rectangular shape whose longitudinal direction is parallel to first direction X.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 28, 2022
    Applicant: TOYO ENGINEERING CORPORATION
    Inventor: Takato NAKAO
  • Publication number: 20210391584
    Abstract: Cell frame 20 includes: frame body 21 having an opening 22, frame body 21 including through-hole 31 for passage of a fluid containing an active material, through-hole 31 penetrating from one surface of frame body 21 to the other surface thereof around opening 22, and groove-like slit 35 formed in one surface or the other surface and connecting through-hole 31 and opening 22; and rotor 40 made of an insulating material, rotor 40 received in slit 35 and forced to rotate by the flow of the fluid through slit 35 between through-hole 31 and opening 22.
    Type: Application
    Filed: October 11, 2019
    Publication date: December 16, 2021
    Applicant: TOYO ENGINEERING CORPORATION
    Inventors: Takato NAKAO, Uma Jaya Ravali THEEDA
  • Patent number: 11145886
    Abstract: Redox flow battery 1 includes cell stack 2, first positive-electrode tank 11, second positive-electrode tank 12, first negative-electrode tank 21, and second negative-electrode tank 22. Cell stack 2 is divided into a plurality of cell groups 3, each of which consists of a plurality of cells 4. The plurality of cell groups 3 are connected to first and second positive-electrode tanks 11, 12 such that a positive-electrode fluid containing positive-electrode active material flows in parallel through the plurality of cell groups 3, and are connected to first and second negative-electrode tanks 21, 22 such that a negative-electrode fluid containing negative-electrode active material flows in parallel through the plurality of cell groups 3. The plurality of cells 4 in each cell group 3 are connected to each other such that the positive-electrode fluid flows in series through a plurality of positive cells 5 and such that the negative-electrode fluid flows in series through a plurality of negative cells 6.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: October 12, 2021
    Assignee: Toyo Engineering Corporation
    Inventors: Takato Nakao, Uma Jaya Ravali Theeda
  • Publication number: 20200280087
    Abstract: Redox flow battery 1 includes cell stack 2, first positive-electrode tank 11, second positive-electrode tank 12, first negative-electrode tank 21, and second negative-electrode tank 22. Cell stack 2 is divided into a plurality of cell groups 3, each of which consists of a plurality of cells 4. The plurality of cell groups 3 are connected to first and second positive-electrode tanks 11, 12 such that a positive-electrode fluid containing positive-electrode active material flows in parallel through the plurality of cell groups 3, and are connected to first and second negative-electrode tanks 21, 22 such that a negative-electrode fluid containing negative-electrode active material flows in parallel through the plurality of cell groups 3. The plurality of cells 4 in each cell group 3 are connected to each other such that the positive-electrode fluid flows in series through a plurality of positive cells 5 and such that the negative-electrode fluid flows in series through a plurality of negative cells 6.
    Type: Application
    Filed: September 10, 2018
    Publication date: September 3, 2020
    Inventors: Takato NAKAO, Uma Jaya Ravali THEEDA
  • Publication number: 20200064081
    Abstract: Chemical heat pump system 1 includes: endothermic unit 3 that contains a slurry containing a solid product and that absorbs heat supplied from an outside to perform an endothermic reaction at first pressure P1; exothermic unit 2 that contains a slurry containing a solid reactant and that performs an exothermic reaction at a second pressure P2 that is higher than the first pressure P1 to generate heat; gas recovery supply unit 4 that recovers a gas reactant that has been decomposed in endothermic unit 3 and that supplies the gas reactant to exothermic unit 2; and circulation unit 5 that supplies the slurry containing the solid reactant, that has been decomposed in endothermic unit 3, to exothermic unit 2 after pressurizing the slurry from first pressure P1 to second pressure P2, and that supplies the slurry containing the solid product, that has been produced in exothermic unit 2, to endothermic unit 3 after depressurizing the slurry from second pressure P2 to first pressure P1, so as to circulate the slurry b
    Type: Application
    Filed: October 24, 2017
    Publication date: February 27, 2020
    Applicant: TOYO ENGINEERING CORPORATION
    Inventors: Takato NAKAO, Satoshi TERAI
  • Publication number: 20190264990
    Abstract: Chemical heat storage system 1 based on an exothermic reaction that produces a solid product from a solid reactant and a gas reactant and an endothermic reaction that decomposes the solid product into the solid reactant and the gas reactant, includes: endothermic unit 3 that contains a slurry containing the solid product and that absorbs heat supplied from the outside to perform the endothermic reaction; exothermic unit 2 that contains a slurry containing the solid reactant and that performs the exothermic reaction to generate heat; and gas recovery supply unit 4 that recovers the gas reactant that has been decomposed in endothermic unit 3 and that supplies the gas reactant to exothermic unit 2.
    Type: Application
    Filed: October 24, 2017
    Publication date: August 29, 2019
    Applicant: TOYO ENGINEERING CORPORATION
    Inventors: Takato NAKAO, Satoshi TERAI
  • Patent number: 10265640
    Abstract: The duty of internal heat exchange can be flexibly adjusted without impairing energy saving performance of a HIDiC. A method of adjusting the duty of heat exchange in a heat exchange structure of a HIDiC includes totally condensing a portion of the vapor fed to a heat exchange structure in a heat exchange structure; and providing a liquid control valve downstream of the heat exchange structure on the first line, without providing a control valve on a vapor-flowing part of first and second lines of the HIDiC, and adjusting a flow rate of a portion of the compressor outlet vapor flowing into the heat exchange structure by using the control valve, while compensating for a pressure loss needed for the control valve by using a liquid head of a condensate, and/or by using pressurization by a pump.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: April 23, 2019
    Assignee: Toyo Engineering Corporation
    Inventors: Takato Nakao, Toshihiro Wakabayashi, Kouichi Tachikawa
  • Patent number: 9908060
    Abstract: A distillation apparatus of the present invention includes high-pressure column 1 corresponding to a region above a heat exchanging section located at a lowermost part of a region including a trayed section or a packed bed section, which is used as a rectifying section; and low-pressure column 2 that is located above as seen from high-pressure column 1, which integrates a region including a trayed section or a packed bed section which is used as a stripping section, with rectifying section corresponding portion 2g that corresponds to a region locating below the heat exchanging section located at the lowermost part in the rectifying section. Rectifying section corresponding portion 2g is located on top 2c of the stripping section in low-pressure column 2 so that rectifying section corresponding portion 2g continues to the stripping section.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: March 6, 2018
    Assignee: Toyo Engineering Corporation
    Inventors: Toshihiro Wakabayashi, Takato Nakao
  • Patent number: 9851140
    Abstract: A distillation apparatus includes a first distillation column and one or more second distillation columns. A higher-pressure part of the first distillation column includes at least part of a rectifying section, and performs gas-liquid contact at a relatively high pressure. A lower pressure-part of the first distillation column includes at least part of a stripping section and performs gas-liquid contact at a relatively low pressure. A vapor line, which includes a pressurizing means, directs a vapor discharged from a column top of the lower-pressure part to a column bottom of the higher-pressure part. A liquid line directs a liquid discharged from the column bottom of the higher-pressure part to the column top of the lower pressure part. Corresponding heat exchange structures transfer heat in both directions between the rectifying section of the first distillation column and at least one second distillation column.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: December 26, 2017
    Assignee: TOYO ENGINEERING CORPORATION
    Inventors: Toshihiro Wakabayashi, Takato Nakao
  • Publication number: 20170209806
    Abstract: The duty of internal heat exchange can be flexibly adjusted without impairing energy saving performance of a HIDiC. A method of adjusting the duty of heat exchange in a heat exchange structure of a HIDiC includes totally condensing a portion of the vapor fed to a heat exchange structure in a heat exchange structure; and providing a liquid control valve downstream of the heat exchange structure on the first line, without providing a control valve on a vapor-flowing part of first and second lines of the HIDiC, and adjusting a flow rate of a portion of the compressor outlet vapor flowing into the heat exchange structure by using the control valve, while compensating for a pressure loss needed for the control valve by using a liquid head of a condensate, and/or by using pressurization by a pump.
    Type: Application
    Filed: January 25, 2017
    Publication date: July 27, 2017
    Inventors: Takato Nakao, Toshihiro Wakabayashi, Kouichi Tachikawa
  • Patent number: 9278295
    Abstract: A distillation apparatus includes a rectifying column, a stripping column, a first pipe that communicates a column top of the stripping column with a column bottom of the rectifying column, and a compressor configured to compress vapor from the stripping column and then to feed the compressed vapor to the rectifying column. The distillation apparatus further includes a heat exchanger located at a predetermined stage of the rectifying column, a liquid withdrawal unit located at a predetermined stage of the stripping column and configured to withdraw a part of liquid from the predetermined stage to an outside of the column, a second pipe that introduces the liquid from the liquid withdrawal unit to the heat exchanger, and a third pipe that introduces fluids introduced through the second pipe to the heat exchanger and then discharged out of the heat exchanger to a stage directly below the liquid withdrawal unit.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: March 8, 2016
    Assignee: TOYO ENGINEERING CORPORATION
    Inventors: Toshihiro Wakabayashi, Takato Nakao
  • Patent number: 9266034
    Abstract: A distillation apparatus includes a rectifying column, a stripping column located above seen from the rectifying column, a liquid sump unit located at a predetermined stage of the stripping column and configured to hold liquid that has flowed downward, a heat exchanger located in the liquid sump unit, a second pipe for introducing vapor in the rectifying column to the heat exchanger of the stripping column, and a third pipe for introducing fluids flowing out from the heat exchanger of the stripping column to the rectifying column. Further, a flare line having lower pressure than pressure in the rectifying column is connected to a downstream side of the third pipe. The distillation apparatus can switch a first flow toward an inside of the rectifying column through the third pipe to a second flow branching from the third pipe toward a pipe at a lower pressure side.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: February 23, 2016
    Assignee: TOYO ENGINEERING CORPORATION
    Inventors: Toshihiro Wakabayashi, Takato Nakao
  • Patent number: 9205346
    Abstract: In a heat integrated distillation column (HIDiC), the product purity can be stably maintained against various disturbances. Provided is a method for controlling a distillation apparatus, which includes a high-pressure part including the whole or a part of a rectifying section and performing gas-liquid contact at a relatively high pressure; a low-pressure part including the whole or a part of a stripping section and performing gas-liquid contact at a relatively low pressure; a line for directing overhead vapor of the low-pressure part to a column bottom of the high-pressure part; a line for directing a column bottom liquid of the high-pressure part to a column top of the low-pressure part; and a heat exchange structure for transferring heat from the rectifying section to the stripping section, wherein the method includes controlling a flow rate of the column bottom liquid to be directed from the high-pressure part to the low-pressure part.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: December 8, 2015
    Assignee: TOYO ENGINEERING CORPORATION
    Inventors: Kouichi Tachikawa, Takato Nakao
  • Publication number: 20150143845
    Abstract: A distillation apparatus includes a first distillation column and one or more second distillation columns. A higher-pressure part of the first distillation column includes at least part of a rectifying section, and performs gas-liquid contact at a relatively high pressure. A lower pressure-part of the first distillation column includes at least part of a stripping section and performs gas-liquid contact at a relatively low pressure. A vapor line, which includes a pressurizing means, directs a vapor discharged from a column top of the lower-pressure part to a column bottom of the higher-pressure part. A liquid line directs a liquid discharged from the column bottom of the higher-pressure part to the column top of the lower pressure part. Corresponding heat exchange structures transfer heat in both directions between the rectifying section of the first distillation column and at least one second distillation column.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 28, 2015
    Inventors: Toshihiro Wakabayashi, Takato Nakao
  • Publication number: 20140131191
    Abstract: In a heat integrated distillation column (HIDiC), the product purity can be stably maintained against various disturbances. Provided is a method for controlling a distillation apparatus, which includes a high-pressure part including the whole or a part of a rectifying section and performing gas-liquid contact at a relatively high pressure; a low-pressure part including the whole or a part of a stripping section and performing gas-liquid contact at a relatively low pressure; a line for directing overhead vapor of the low-pressure part to a column bottom of the high-pressure part; a line for directing a column bottom liquid of the high-pressure part to a column top of the low-pressure part; and a heat exchange structure for transferring heat from the rectifying section to the stripping section, wherein the method includes controlling a flow rate of the column bottom liquid to be directed from the high-pressure part to the low-pressure part.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 15, 2014
    Applicant: TOYO ENGINEERING CORPORATION
    Inventors: Kouichi Tachikawa, Takato Nakao
  • Publication number: 20140083839
    Abstract: The present invention provides a method for operating a stripper that is provided for a separating process in an aromatic component processing apparatus in which the stripper separates a component that is lighter than an aromatic component from the aromatic component via a distillation operation. In the method, using a HIDiC as the stripper, the pressure of the column top of rectifying section (201) of the HIDiC is determined, and the pressure of the column top of stripping section (202) of the HIDiC is set to be lower than the pressure of the column top of rectifying section (201).
    Type: Application
    Filed: September 16, 2013
    Publication date: March 27, 2014
    Applicant: Toyo Engineering Corporation
    Inventors: Toshihiro Wakabayashi, Takato Nakao
  • Publication number: 20130256115
    Abstract: A distillation apparatus of the present invention includes high-pressure column 1 corresponding to a region above a heat exchanging section located at a lowermost part of a region including a trayed section or a packed bed section, which is used as a rectifying section; and low-pressure column 2 that is located above as seen from high-pressure column 1, which integrates a region including a trayed section or a packed bed section which is used as a stripping section, with rectifying section corresponding portion 2g that corresponds to a region locating below the heat exchanging section located at the lowermost part in the rectifying section. Rectifying section corresponding portion 2g is located on top 2c of the stripping section in low-pressure column 2 so that rectifying section corresponding portion 2g continues to the stripping section.
    Type: Application
    Filed: March 7, 2013
    Publication date: October 3, 2013
    Applicant: TOYO ENGINEERING CORPORATION
    Inventors: Toshihiro Wakabayashi, Takato Nakao