Patents by Inventor Takayuki Aoshima

Takayuki Aoshima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200114307
    Abstract: Provided is a method for separating ammonia gas using zeolite membrane having excellent separation stability at a high temperature capable of separating ammonia gas from a mixed gas composed of multiple components including ammonia gas, hydrogen gas, and nitrogen gas to the permeation side with high selectivity and high permeability. Also provided is a method for separating ammonia by selectively permeating ammonia gas from a mixed gas containing at least ammonia gas, hydrogen gas, and nitrogen gas using a zeolite membrane, wherein the ammonia gas concentration in the mixed gas is 1.0% by volume or more.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Manabu TANAKA, Takeshi MATSUO, Takayuki AOSHIMA
  • Patent number: 10619000
    Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: April 14, 2020
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Teruhiko Ohara, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
  • Publication number: 20200001276
    Abstract: Provided is a catalyst including a metal component including a first component that is rhenium and one or more second components selected from the group consisting of silicon, gallium, germanium, and indium and a carrier on which the metal component is supported, the carrier including an oxide of a metal belonging to Group 4 of the periodic table. Also provided is an alcohol production method in which a carbonyl compound is treated using the above catalyst. It is possible to produce an alcohol by a hydrogenation reaction of a carbonyl compound with high selectivity and high efficiency while reducing side reactions.
    Type: Application
    Filed: September 6, 2019
    Publication date: January 2, 2020
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Takeshi MATSUO, Yumiko Yoshikawa, Takayuki Aoshima
  • Publication number: 20190334208
    Abstract: Disclosed herein is a nonaqueous electrolyte solution containing an electrolyte and a nonaqueous solvent, the nonaqueous electrolyte solution including a compound represented by formula (A) and: (1) at least one compound selected from a nitrile compound, an isocyanate compound, a difluorophosphate, a fluorosulfonate, a lithium bis(fluorosulfonyl)imide and a compound represented by the formula (B) below, or (2) a cyclic carbonate compound having a fluorine atom in an amount of 0.01% by mass to 50.0% by mass based on a total amount of the nonaqueous electrolyte solution. In formula (A), R1 to R3 represent optionally substituted organic groups having 1 to 20 carbon atoms, and in formula (B), R4, R5 and R6 independently represent an alkyl group, alkenyl group or alkynyl group having 1 to 12 carbon atoms that may be substituted with a halogen atom, and n represents an integer of 0 to 6.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 31, 2019
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Eiji Nakazawa, Yoichi Oohashi, Minoru Kotato, Takamichi Mitsui, Takayuki Aoshima, Takeshi Nakamura
  • Publication number: 20190263960
    Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.
    Type: Application
    Filed: May 16, 2019
    Publication date: August 29, 2019
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Teruhiko OHARA, Naoki SUZUKI, Yasuko NAKAJIMA, Hiroto ITOU, Takayuki AOSHIMA, Naoki SUGAI, Takanao MATSUMOTO
  • Patent number: 10351657
    Abstract: The present invention aims to provide a polyester polyol having favorable reactivity and a favorable color tone, which can be used for obtaining a polyurethane having an excellent balance of flexibility, mechanical strength, and chemical resistance, and a method for producing the polyester polyol. The object can be achieved with a polyester polyol in which an aliphatic diol contains as a structural unit 1,10-decanediol derived from a biomass resource, and in which the aldehyde body content in the polyester polyol is 0.01 to 0.5% by weight, and a method for producing the polyester polyol.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: July 16, 2019
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yoshikazu Kanamori, Shigeki Nitta, Kaori Yano, Takayuki Aoshima, Yuta Hioki
  • Patent number: 10351658
    Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: July 16, 2019
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Teruhiko Ohara, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
  • Publication number: 20190185615
    Abstract: An aliphatic dicarboxylic acid, an aliphatic diol or a derivatives thereof and/or as succinic acid, a butane diol, or a both-hydroxy-terminated polyether having the number of carbon atoms of 4 to 1000, each of which is derived from a biomass resource and has nitrogen atoms in an amount of 0.01 to 100 ppm. Products and methods using these materials are also provided.
    Type: Application
    Filed: March 1, 2019
    Publication date: June 20, 2019
    Inventors: Takayuki AOSHIMA, Yasuaki Miki, Katsuhisa Kumazawa, Satoshi Katou, Tadashi Uyeda, Toyomasa Hoshino, Noboru Shintani, Kenji Yamagishi, Atsushi Isotani
  • Patent number: 10287393
    Abstract: An aliphatic dicarboxylic acid, an aliphatic diol or a derivatives thereof and/or as succinic acid, a butane diol, or a both-hydroxy-terminated polyether having the number of carbon atoms of 4 to 1000, each of which is derived from a biomass resource and has nitrogen atoms in an amount of 0.01 to 100 ppm. Products and methods using these materials are also provided.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: May 14, 2019
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takayuki Aoshima, Yasuaki Miki, Katsuhisa Kumazawa, Satoshi Katou, Tadashi Uyeda, Toyomasa Hoshino, Noboru Shintani, Kenji Yamagishi, Atsushi Isotani
  • Publication number: 20180215859
    Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.
    Type: Application
    Filed: March 27, 2018
    Publication date: August 2, 2018
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Teruhiko OHARA, Naoki SUZUKI, Yasuko NAKAJIMA, Hiroto ITOU, Takayuki AOSHIMA, Naoki SUGAI, Takanao MATSUMOTO
  • Publication number: 20180171071
    Abstract: An aliphatic dicarboxylic acid, an aliphatic diol or a derivatives thereof and/or as succinic acid, a butane diol, or a both-hydroxy-terminated polyether having the number of carbon atoms of 4 to 1000, each of which is derived from a biomass resource and has nitrogen atoms in an amount of 0.01 to 100 ppm. Products and methods using these materials are also provided.
    Type: Application
    Filed: September 1, 2017
    Publication date: June 21, 2018
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Takayuki AOSHIMA, Yasuaki Miki, Katsuhisa Kumazawa, Satoshi Katou, Tadashi Uyeda, Toyomasa Hoshino, Noboru Shintani, Kenji Yamagishi, Atsushi Isotani
  • Patent number: 9963537
    Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: May 8, 2018
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Teruhiko Ohara, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
  • Publication number: 20180037692
    Abstract: The present invention aims to provide a polyester polyol having favorable reactivity and a favorable color tone, which can be used for obtaining a polyurethane having an excellent balance of flexibility, mechanical strength, and chemical resistance, and a method for producing the polyester polyol. The object can be achieved with a polyester polyol in which an aliphatic diol contains as a structural unit 1,10-decanediol derived from a biomass resource, and in which the aldehyde body content in the polyester polyol is 0.01 to 0.5% by weight, and a method for producing the polyester polyol.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yoshikazu KANAMORI, Shigeki NITTA, Kaori YANO, Takayuki AOSHIMA, Yuta HIOKI
  • Patent number: 9780409
    Abstract: The present invention is to provide: a nonaqueous-electrolyte battery excellent in terms of safety during overcharge and high-temperature storability; and a nonaqueous electrolytic solution which gives the battery. The present invention relates to a nonaqueous electrolytic solution comprising an electrolyte and a nonaqueous solvent, wherein the nonaqueous electrolytic solution comprises at least one of specific compounds.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: October 3, 2017
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Kanako Takiguchi, Masamichi Onuki, Minoru Kotato, Ryo Yamaguchi, Takeshi Nakamura, Takayuki Aoshima
  • Publication number: 20160272751
    Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 22, 2016
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Teruhiko OHARA, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
  • Patent number: 9394397
    Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: July 19, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Teruhiko Ohara, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
  • Patent number: 9290614
    Abstract: The invention relates to a method for producing a biomass-resource-derived polyurethane, which comprises: reacting a dicarboxylic acid and an aliphatic diol to produce a polyester polyol; and reacting the polyester polyol and a polyisocyanate compound, wherein the dicarboxylic acid contains at least one component derived from biomass resources, a content of an organic acid in the dicarboxylic acid is more than 0 ppm and not more than 1,000 ppm relative to the dicarboxylic acid, and a pKa value of the organic acid at 25° C. is not more than 3.7.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: March 22, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Teruhiko Ohara, Naoki Suzuki, Yasuko Nakajima, Hiroto Itou, Takayuki Aoshima, Naoki Sugai, Takanao Matsumoto
  • Publication number: 20150364794
    Abstract: A nonaqueous electrolyte solution for a secondary battery that inhibits increases in resistance during high-temperature storage in a charged state and decreases in capacity, as well as a secondary battery that uses this lithium nonaqueous electrolyte solution. A lithium nonaqueous electrolyte secondary battery that incorporates this non-aqeuous electrolyte solution and that demonstrates a favorable overall balance of battery performance with respect to performance such as durability, capacity, resistance and output characteristics.
    Type: Application
    Filed: August 26, 2015
    Publication date: December 17, 2015
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Eiji NAKAZAWA, Yoichi Oohashi, Minoru Kotato, Takamichi Mitsui, Takayuki Aoshima, Takeshi Nakamura
  • Patent number: 9080009
    Abstract: The present invention provides a resin capable of contributing greatly to solve environmental problems and problems related to exhaustion of fossil fuel resources and having physical properties suited for practical use. The polyester according to the present invention has a diol and a dicarboxylic acid as constituent components and has an amount of terminal acid of 50 equivalents/metric ton or less.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: July 14, 2015
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takayuki Aoshima, Yasuaki Miki, Katsuhisa Kumazawa, Satoshi Katou, Tadashi Uyeda, Toyomasa Hoshino, Noboru Shintani, Kenji Yamagishi, Atsushi Isotani
  • Patent number: 8969507
    Abstract: A method of producing an aliphatic polyester resin by continuously esterifying and melt polycondensing an aliphatic dicarboxylic acid and an aliphatic diol; and at least one aliphatic hydroxycarboxylic acid; and at least one of an aliphatic unsaturated dicarboxylic acid and cis- and trans-isomers of aliphatic unsaturated tricarboxylic acids, wherein the total amount of the at least one aliphatic hydroxycarboxylic acid and the at least one of aliphatic unsaturated dicarboxylic acid and cis- and trans-isomers of aliphatic unsaturated tricarboxylic acids is from 0.0010 to 0.50 mol % of the total amount of the aliphatic polyester resin; and the total amount of the at least one aliphatic hydroxycarboxylic acid is from 1.0 to 7.0 in terms of a molar ratio to the total amount of the at least one of aliphatic unsaturated dicarboxylic acid and cis- and trans-isomers of aliphatic unsaturated tricarboxylic acids.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Toyomasa Hoshino, Shinichiro Matsuzono, Hiroyuki Kaneko, Toshiyuki Hamano, Takayuki Aoshima, Tadashi Ueda