Patents by Inventor Takefumi Ito

Takefumi Ito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230268533
    Abstract: A redox flow battery system includes a battery cell that performs charge-discharge by supplying an electrolyte; a monitor cell to which the electrolyte is supplied; a voltmeter that measures an open circuit voltage of the monitor cell; a thermometer that measures a liquid temperature of the electrolyte; and a controller that controls the charge-discharge of the battery cell based on the open circuit voltage, and the controller corrects the open circuit voltage in accordance with the liquid temperature.
    Type: Application
    Filed: August 23, 2021
    Publication date: August 24, 2023
    Inventor: Takefumi ITO
  • Patent number: 10818939
    Abstract: Provided is a redox flow battery in which damage is unlikely to occur in a membrane. A redox flow battery includes a pair of adjacent cell frames, each cell frame including a frame body in which a flow channel for an electrolyte is formed, and a bipolar plate disposed inside the frame body; a positive electrode and a negative electrode disposed so as to face each other between the bipolar plates of the pair of cell frames; a membrane interposed between the positive electrode and the negative electrode; a protection plate which covers the flow channel and presses edge portions of the positive electrode or the negative electrode toward the bipolar plate; and a membrane protection structure which prevents the membrane from being broken by contact between the protection plate and the membrane.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: October 27, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kosuke Shiraki, Takashi Kanno, Takefumi Ito, Masahiro Kuwabara, Hideyuki Yamaguchi, Hayato Fujita, Kiyoaki Hayashi, Kiyoaki Moriuchi
  • Patent number: 10790530
    Abstract: The battery cell for a flow battery includes a cell frame including a frame including a through-window and a manifold serving as an electrolyte flow path, and a bipolar plate blocking the through-window; a positive electrode disposed on one surface side of the bipolar plate; and a negative electrode disposed on another surface side of the bipolar plate. In this battery cell, in the frame, a thickness of a portion in which the manifold is formed is defined as Ft; in the bipolar plate, a thickness of a portion blocking the through-window is defined as Bt; in the positive electrode, a thickness of a portion facing the bipolar plate is defined as Pt; in the negative electrode, a thickness of a portion facing the bipolar plate is defined as Nt; and these thicknesses satisfy Ft?4 mm, Bt?Ft?3.0 mm, Pt?1.5 mm, and Nt?1.5 mm.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: September 29, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kanno, Katsuya Yamanishi, Takefumi Ito, Masahiro Kuwabara, Kiyoaki Moriuchi, Hideyuki Yamaguchi, Hayato Fujita, Kousuke Shiraki, Kiyoaki Hayashi
  • Patent number: 10749202
    Abstract: A redox flow battery includes a cell frame having a frame body in which a sealing groove is formed and a sealing member disposed in the sealing groove. The redox flow battery includes an adhesive that fixes the sealing member to the sealing groove, and a type A durometer hardness of the adhesive after curing is 100 or less. Preferably, the type A durometer hardness of the adhesive after curing is less than or equal to a type A durometer hardness of the sealing member.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: August 18, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kousuke Shiraki, Takashi Kanno, Haruhisa Toyoda, Takefumi Ito, Masahiro Kuwabara, Hideyuki Yamaguchi, Hayato Fujita, Kiyoaki Hayashi
  • Publication number: 20200259198
    Abstract: The battery cell for a flow battery includes a cell frame including a frame including a through-window and a manifold serving as an electrolyte flow path, and a bipolar plate blocking the through-window; a positive electrode disposed on one surface side of the bipolar plate; and a negative electrode disposed on another surface side of the bipolar plate. In this battery cell, in the frame, a thickness of a portion in which the manifold is formed is defined as Ft; in the bipolar plate, a thickness of a portion blocking the through-window is defined as Bt; in the positive electrode, a thickness of a portion facing the bipolar plate is defined as Pt; in the negative electrode, a thickness of a portion facing the bipolar plate is defined as Nt; and these thicknesses satisfy Ft?4 mm, Bt?Ft?3.0 mm, Pt?1.5 mm, and Nt?1.5 mm.
    Type: Application
    Filed: January 17, 2019
    Publication date: August 13, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kanno, Katsuya Yamanishi, Takefumi Ito, Masahiro Kuwabara, Kiyoaki Moriuchi, Hideyuki Yamaguchi, Hayato Fujita, Kousuke Shiraki, Kiyoaki Hayashi
  • Publication number: 20200112044
    Abstract: The battery cell for a flow battery includes a cell frame including a frame including a through-window and a manifold serving as an electrolyte flow path, and a bipolar plate blocking the through-window; a positive electrode disposed on one surface side of the bipolar plate; and a negative electrode disposed on another surface side of the bipolar plate. In this battery cell, in the frame, a thickness of a portion in which the manifold is formed is defined as Ft; in the bipolar plate, a thickness of a portion blocking the through-window is defined as Bt; in the positive electrode, a thickness of a portion facing the bipolar plate is defined as Pt; in the negative electrode, a thickness of a portion facing the bipolar plate is defined as Nt; and these thicknesses satisfy Ft?4 mm, Bt?Ft?3.0 mm, Pt?1.5 mm, and Nt?1.5 mm.
    Type: Application
    Filed: January 17, 2019
    Publication date: April 9, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kanno, Katsuya Yamanishi, Takefumi Ito, Masahiro Kuwabara, Kiyoaki Moriuchi, Hideyuki Yamaguchi, Hayato Fujita, Kousuke Shiraki, Kiyoaki Hayashi
  • Patent number: 10593964
    Abstract: A bipolar plate is a bipolar plate for a battery, the bipolar plate having a positive electrode disposed on a first surface side thereof and a negative electrode disposed on a second surface side thereof, wherein at least one of the first surface and the second surface is provided with a flow path through which an electrolyte flows. The flow path includes an introduction port for the electrolyte, a discharge port for the electrolyte, and a groove section which is located between the introduction port and the discharge port and guides the electrolyte to a predetermined route. The groove section includes a plurality of vertical groove sections which extend in a vertical direction and are arranged in parallel in a direction orthogonal to the vertical direction when the bipolar plate is placed at a predetermined position in the battery.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: March 17, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hayato Fujita, Hideyuki Yamaguchi, Takashi Kanno, Takefumi Ito, Masahiro Kuwabara, Kiyoaki Hayashi
  • Patent number: 10566644
    Abstract: Provided are a battery cell that can be produced efficiently. A frame body of each cell frame of a battery cell includes an inner peripheral recessed portion formed by reducing a thickness of a peripheral portion that surrounds an entire perimeter of the penetrating window so that the peripheral portion has a smaller thickness than other portions of the frame body. A bipolar plate of the battery cell includes an outer peripheral engaging portion that engages with the inner peripheral recessed portion, the outer peripheral engaging portion being a portion having a particular width and extending throughout an entire outer periphery of the bipolar plate.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: February 18, 2020
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideyuki Yamaguchi, Katsuya Yamanishi, Takashi Kanno, Takefumi Ito, Masahiro Kuwabara, Kiyoaki Moriuchi, Kiyoaki Hayashi, Hayato Fujita, Kousuke Shiraki
  • Publication number: 20190245238
    Abstract: A cell frame includes a bipolar plate and a frame body provided on an outer periphery of the bipolar plate. The bipolar plate includes, in a surface thereof, a groove portion through which an electrolyte supplied from an outside of the cell frame flows. The groove portion includes a liquid-holding portion that holds the electrolyte when the supply of the electrolyte from the outside is stopped. The frame body has an opening having a planar area of 250 cm2 or more. A total volume of a volume of a recess formed by the bipolar plate and an inner wall of the frame body and a total volume of the liquid-holding portion is 5 cm3 or more.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 8, 2019
    Applicants: Sumitomo Electric Industries, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Takefumi Ito, Masahiro Kuwabara
  • Publication number: 20190157699
    Abstract: The battery cell for a flow battery includes a cell frame including a frame including a through-window and a manifold serving as an electrolyte flow path, and a bipolar plate blocking the through-window; a positive electrode disposed on one surface side of the bipolar plate; and a negative electrode disposed on another surface side of the bipolar plate. In this battery cell, in the frame, a thickness of a portion in which the manifold is formed is defined as Ft; in the bipolar plate, a thickness of a portion blocking the through-window is defined as Bt; in the positive electrode, a thickness of a portion facing the bipolar plate is defined as Pt; in the negative electrode, a thickness of a portion facing the bipolar plate is defined as Nt; and these thicknesses satisfy Ft?4 mm, Bt?Ft?3.0 mm, Pt?1.5 mm, and Nt?1.5 mm.
    Type: Application
    Filed: January 17, 2019
    Publication date: May 23, 2019
    Inventors: Takashi KANNO, Katsuya YAMANISHI, Takefumi ITO, Masahiro KUWABARA, Kiyoaki MORIUCHI, Hideyuki YAMAGUCHI, Hayato FUJITA, Kousuke SHIRAKI, Kiyoaki HAYASHI
  • Patent number: 10230123
    Abstract: The battery cell for a flow battery includes a cell frame including a frame including a through-window and a manifold serving as an electrolyte flow path, and a bipolar plate blocking the through-window; a positive electrode disposed on one surface side of the bipolar plate; and a negative electrode disposed on another surface side of the bipolar plate. In this battery cell, in the frame, a thickness of a portion in which the manifold is formed is defined as Ft; in the bipolar plate, a thickness of a portion blocking the through-window is defined as Bt; in the positive electrode, a thickness of a portion facing the bipolar plate is defined as Pt; in the negative electrode, a thickness of a portion facing the bipolar plate is defined as Nt; and these thicknesses satisfy Ft?4 mm, Bt?Ft?3.0 mm, Pt?1.5 mm, and Nt?1.5 mm.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: March 12, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kanno, Katsuya Yamanishi, Takefumi Ito, Masahiro Kuwabara, Kiyoaki Moriuchi, Hideyuki Yamaguchi, Hayato Fujita, Kousuke Shiraki, Kiyoaki Hayashi
  • Publication number: 20190067726
    Abstract: A redox flow battery includes a cell frame having a frame body in which a sealing groove is formed and a sealing member disposed in the sealing groove. The redox flow battery includes an adhesive that fixes the sealing member to the sealing groove, and a type A durometer hardness of the adhesive after curing is 100 or less. Preferably, the type A durometer hardness of the adhesive after curing is less than or equal to a type A durometer hardness of the sealing member.
    Type: Application
    Filed: January 25, 2017
    Publication date: February 28, 2019
    Inventors: Kousuke Shiraki, Takashi Kanno, Haruhisa Toyoda, Takefumi Ito, Masahiro Kuwabara, Hideyuki Yamaguchi, Hayato Fujita, Kiyoaki Hayashi
  • Publication number: 20190067711
    Abstract: Provided is a redox flow battery in which damage is unlikely to occur in a membrane. A redox flow battery includes a pair of adjacent cell frames, each cell frame including a frame body in which a flow channel for an electrolyte is formed, and a bipolar plate disposed inside the frame body; a positive electrode and a negative electrode disposed so as to face each other between the bipolar plates of the pair of cell frames; a membrane interposed between the positive electrode and the negative electrode; a protection plate which covers the flow channel and presses edge portions of the positive electrode or the negative electrode toward the bipolar plate; and a membrane protection structure which prevents the membrane from being broken by contact between the protection plate and the membrane.
    Type: Application
    Filed: February 3, 2016
    Publication date: February 28, 2019
    Inventors: Kosuke Shiraki, Takashi Kanno, Takefumi Ito, Masahiro Kuwabara, Hideyuki Yamaguchi, Hayato Fujita, Kiyoaki Hayashi, Kiyoaki Moriuchi
  • Patent number: 10211467
    Abstract: A cell frame for a redox flow battery comprises: a bipolar plate; and a frame body provided at an outer periphery of the bipolar plate, the frame body including a manifold which penetrates through front and back surfaces of the frame body and through which an electrolyte flows, and at least one slit being formed on the front surface of the frame body and forming a channel of the electrolyte between the manifold and the bipolar plate, a cross sectional shape of the slit, in a longitudinal direction of the slit, having a width w and a depth h, the width w and the depth h satisfying (A) w?3 mm and (B) 1/8<h/w<1.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: February 19, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takefumi Ito, Takashi Kanno, Masahiro Kuwabara, Katsuya Yamanishi, Hideyuki Yamaguchi, Hayato Fujita, Kiyoaki Hayashi, Kousuke Shiraki, Kiyoaki Moriuchi
  • Patent number: 10193178
    Abstract: A frame body for a redox flow battery is provided with a window. The expressions A>C, B>D, and (B/A)?0.2 are satisfied, where A represents the length of a long side of a rectangle that envelops the window, B represents the width of a horizontal frame corresponding to the long side, C represents the length of a short side of the rectangle, and D represents the width of a vertical frame corresponding to the short side.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: January 29, 2019
    Assignee: Sumitomo Electric Inductries, Ltd.
    Inventors: Masahiro Kuwabara, Haruhisa Toyoda, Takashi Kanno, Takefumi Ito, Hideyuki Yamaguchi, Hayato Fujita, Kousuke Shiraki, Kiyoaki Hayashi
  • Publication number: 20190027770
    Abstract: Provided are a redox flow battery having a low internal resistance, an electrode used in a redox flow battery, and an electrode characteristic evaluation method with which a characteristic of an electrode can be simply and accurately evaluated. The redox flow battery includes at least one pair of electrodes in a stacked manner, the electrodes including a positive electrode and a negative electrode to which an electrolyte is supplied and in which a battery reaction is performed.
    Type: Application
    Filed: January 7, 2016
    Publication date: January 24, 2019
    Inventors: Kosuke Shiraki, Takashi Kanno, Takefumi Ito, Masahiro Kuwabara, Hideyuki Yamaguchi, Hayato Fujita, Kiyoaki Hayashi, Kiyoaki Moriuchi
  • Patent number: 10158127
    Abstract: A cell frame for a redox flow battery comprises: a bipolar plate; and a frame body provided at an outer periphery of the bipolar plate, the frame body including a manifold which penetrates through front and back surfaces of the frame body and through which an electrolyte flows, and at least one slit being formed on the front surface of the frame body and forming a channel of the electrolyte between the manifold and the bipolar plate, a cross sectional shape of the slit, in a longitudinal direction of the slit, having a width w and a depth h, the width w and the depth h satisfying (A) w?3 mm and (B) 1/8<h/w<1.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: December 18, 2018
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takefumi Ito, Takashi Kanno, Masahiro Kuwabara, Katsuya Yamanishi, Hideyuki Yamaguchi, Hayato Fujita, Kiyoaki Hayashi, Kousuke Shiraki, Kiyoaki Moriuchi
  • Publication number: 20180277858
    Abstract: A bipolar plate for a battery has two surfaces on which a positive electrode and a negative electrode are to be disposed respectively. At least one of the surfaces of the bipolar plate is provided with a plurality of groove sections through which an electrolyte flows and a ridge section located between the groove sections that are adjacent to each other. The groove sections include an introduction groove section and a discharge groove section that are not in communication with each other. The ridge section includes an uneven portion configured to suppress sliding of the positive electrode or the negative electrode in a direction in which the adjacent groove sections are arranged in parallel. The uneven portion includes a rough surface provided on at least a part of a surface of the ridge section and having an arithmetical mean roughness Ra of 0.1 ?m to 10 ?m inclusive.
    Type: Application
    Filed: March 16, 2017
    Publication date: September 27, 2018
    Inventors: Hayato Fujita, Masahiro Kuwabara, Takashi Kanno, Haruhisa Toyoda, Hideyuki Yamaguchi, Kousuke Shiraki, Kiyoaki Hayashi, Takefumi Ito
  • Publication number: 20180190999
    Abstract: A bipolar plate is a bipolar plate for a battery, the bipolar plate having a positive electrode disposed on a first surface side thereof and a negative electrode disposed on a second surface side thereof, wherein at least one of the first surface and the second surface is provided with a flow path through which an electrolyte flows. The flow path includes an introduction port for the electrolyte, a discharge port for the electrolyte, and a groove section which is located between the introduction port and the discharge port and guides the electrolyte to a predetermined route. The groove section includes a plurality of vertical groove sections which extend in a vertical direction and are arranged in parallel in a direction orthogonal to the vertical direction when the bipolar plate is placed at a predetermined position in the battery.
    Type: Application
    Filed: June 16, 2016
    Publication date: July 5, 2018
    Inventors: Hayato Fujita, Hideyuki Yamaguchi, Takashi Kanno, Takefumi Ito, Masahiro Kuwabara, Kiyoaki Hayashi
  • Patent number: 10002684
    Abstract: A copper alloy according to the present invention is a copper alloy rolled to be plate-shaped. The copper alloy contains 8.5 to 9.5 mass % of Ni, 5.5 to 6.5 mass % of Sn with a remainder being Cu and unavoidable impurities. An average diameter of crystal grains in a cross section perpendicular to a rolling direction is less than 6 ?m. A ratio x/y of an average length x of the crystal grains in a plate width direction to an average length y in a plate thickness direction satisfies 1?x/y?2.5. An X-ray diffracted intensity ratio in a plate surface parallel to the rolling direction of the copper alloy includes, when an X-ray diffracted intensity of a (220) plane is standardized as 1, an intensity ratio of a (200) plane being 0.30 or less, an intensity ratio of a (111) plane being 0.45 or less, and an intensity ratio of a (311) plane being 0.60 or less. The intensity ratio of the (111) plane is greater than the intensity ratio of the (200) plane and smaller than the intensity ratio of the (311) plane.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: June 19, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Takefumi Ito, Chisako Maeda, Yuji Yoshida, Kei Saegusa, Takayuki Kemmotsu