Patents by Inventor Takenori Hashizume

Takenori Hashizume has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7352148
    Abstract: An optical axis controller and method for headlamps for a vehicle where the swiveling lamps are not driven due to the minute steering operation of the driver. The steering angle of the steering wheel is detected by using, for example, a steering angle signal from a steering angle sensor. A desired light emission direction is computed based on the steering angle and a hysteresis value and the lamps are driven to an actual light emission direction matching the desired light emission direction.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: April 1, 2008
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Takenori Hashizume
  • Publication number: 20070046239
    Abstract: An optical axis controller and method for headlamps for a vehicle where the swiveling lamps are not driven due to the minute steering operation of the driver. The steering angle of the steering wheel is detected by using, for example, a steering angle signal from a steering angle sensor. A desired light emission direction is computed based on the steering angle and a hysteresis value and the lamps are driven to an actual light emission direction matching the desired light emission direction.
    Type: Application
    Filed: August 25, 2006
    Publication date: March 1, 2007
    Applicant: Nissan Motor Co., Ltd.
    Inventor: Takenori Hashizume
  • Patent number: 6985805
    Abstract: In an adaptive cruise control (ACC) system with object detection system interaction, capable of executing a vehicle speed holding mode, a constant-speed control mode, and a following control mode, a lane-change detector is provided to detect the presence or absence of a driver's intention for a lane change by the host vehicle. An ACC unit executes the vehicle speed holding mode during which the host vehicle's speed is restricted until such time that a predetermined holding time has expired from a time when the object detection system loses the preceding vehicle during the following control mode, and thereafter executes the constant-speed control mode during which the host vehicle's speed is automatically accelerated up to a set speed. The ACC unit releases the vehicle speed holding mode, in presence of the driver's intention for the lane change when the object detection system loses the preceding vehicle during the following control mode.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: January 10, 2006
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hideki Sudou, Takenori Hashizume
  • Publication number: 20030234127
    Abstract: In an adaptive cruise control (ACC) system with object detection system interaction, capable of executing a vehicle speed holding mode, a constant-speed control mode, and a following control mode, a lane-change detector is provided to detect the presence or absence of a driver's intention for a lane change by the host vehicle. An ACC unit executes the vehicle speed holding mode during which the host vehicle's speed is restricted until such time that a predetermined holding time has expired from a time when the object detection system loses the preceding vehicle during the following control mode, and thereafter executes the constant-speed control mode during which the host vehicle's speed is automatically accelerated up to a set speed. The ACC unit releases the vehicle speed holding mode, in presence of the driver's intention for the lane change when the object detection system loses the preceding vehicle during the following control mode.
    Type: Application
    Filed: June 11, 2003
    Publication date: December 25, 2003
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hideki Sudou, Takenori Hashizume
  • Patent number: 6473686
    Abstract: In an automatic vehicular velocity control apparatus for an automotive vehicle, a relative velocity detector is provided to detect a relative velocity of a preceding vehicle to the vehicle, an inter-vehicle distance command value calculator is provided to calculate an inter-vehicle distance command value, a control response characteristic determinator is provided to determine a control response characteristic of the inter-vehicle distance control system according to a deviation from the inter-vehicle distance command value to a detected value of the inter-vehicle distance and a detected value of the relative velocity, a vehicular velocity command value calculator is provided to calculate a vehicular velocity command value on the basis of the determined control response characteristic of the inter-vehicle distance control system, and a vehicular velocity control section is provided to control at least one of a driving force of the vehicle, a braking force of the vehicle, and a gear ratio of a transmission in s
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: October 29, 2002
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazutaka Adachi, Takenori Hashizume, Hideo Iwamoto
  • Patent number: 6415217
    Abstract: In vehicular velocity controlling apparatus and method for an automotive vehicle, an inter-vehicle distance from the vehicle to a preceding vehicle which is running ahead of the vehicle is detected, a vehicular velocity of the vehicle is detected; a relative velocity of the vehicle to the preceding vehicle is detected, a target inter-vehicle distance is calculated on the basis of detected values of the inter-vehicle distance and of the vehicular velocity, a control response characteristic of an inter-vehicle distance system to the target inter-vehicle distance is determined, an inter-vehicle distance command value based on the target inter-vehicle distance is calculated in accordance with the determined control response characteristic, a target vehicular velocity is calculated on the basis of the inter-vehicle distance command value, and the vehicular velocity is controlled to make the detected value of the vehicular velocity substantially equal to the target vehicular velocity, the control response character
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: July 2, 2002
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akira Higashimata, Takenori Hashizume, Kazutaka Adachi
  • Patent number: 6405120
    Abstract: In vehicular velocity controlling method and apparatus, an inter-vehicle distance from the vehicle to another vehicle which is running ahead of the vehicle is detected, a target vehicular velocity to make a detected value of the inter-vehicle distance substantially equal to a target inter-vehicle distance is calculated, a vehicular velocity of the vehicle is detected, a target vehicular driving force to make a detected value of the vehicular velocity substantially equal to the target vehicular velocity is detected, a gradient of a descending slope on which the vehicle is running is detected, a driving force exerted by a rotary driving force source and a gear position of a vehicular transmission are controlled and simultaneously a brake force exerted by a vehicular brake system if the target driving force is negative on the basis of the calculated target driving force is controlled, and a limitation on a shift of the gear position of the vehicular transmission even under an establishment of a gear position shi
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: June 11, 2002
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akira Higashimata, Takenori Hashizume
  • Publication number: 20020055813
    Abstract: In an automatic vehicular velocity control apparatus for an automotive vehicle, a relative velocity detector is provided to detect a relative velocity of a preceding vehicle to the vehicle, an inter-vehicle distance command value calculator is provided to calculate an inter-vehicle distance command value, a control response characteristic determinator is provided to determine a control response characteristic of the inter-vehicle distance control system according to a deviation from the inter-vehicle distance command value to a detected value of the inter-vehicle distance and a detected value of the relative velocity, a vehicular velocity command value calculator is provided to calculate a vehicular velocity command value on the basis of the determined control response characteristic of the inter-vehicle distance control system, and a vehicular velocity control section is provided to control at least one of a driving force of the vehicle, a braking force of the vehicle, and a gear ratio of a transmission in s
    Type: Application
    Filed: November 16, 2001
    Publication date: May 9, 2002
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazutaka Adachi, Takenori Hashizume, Hideo Iwamoto
  • Patent number: 6330507
    Abstract: In an automatic vehicular velocity control apparatus for an automotive vehicle, a relative velocity detector is provided to detect a relative velocity of a preceding vehicle to the vehicle, an inter-vehicle distance command value calculator is provided to calculate an inter-vehicle distance command value, a control response characteristic determinator is provided to determine a control response characteristic of the inter-vehicle distance control system according to a deviation from the inter-vehicle distance command value to a detected value of the inter-vehicle distance and a detected value of the relative velocity, a vehicular velocity command value calculator is provided to calculate a vehicular velocity command value on the basis of the determined control response characteristic of the inter-vehicle distance control system, and a vehicular velocity control section is provided to control at least one of a driving force of the vehicle, a braking force of the vehicle, and a gear ratio of a transmission in s
    Type: Grant
    Filed: August 26, 1999
    Date of Patent: December 11, 2001
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazutaka Adachi, Takenori Hashizume, Hideo Iwamoto
  • Patent number: 6292737
    Abstract: A vehicle follow-up control apparatus includes a distance sensor sensing an actual vehicle-to-vehicle distance from a controlled vehicle to a preceding vehicle, a vehicle speed sensor sensing an actual vehicle speed of the controlled vehicle, and a controller for calculating a desired vehicle speed to be achieved in the controlled vehicle. The desired vehicle speed is calculated in accordance with the actual vehicle-to-vehicle distance, the relative speed and a control gain which is adjusted in accordance with the relative speed.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: September 18, 2001
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akira Higashimata, Takenori Hashizume
  • Patent number: 6259395
    Abstract: In a relative velocity detecting apparatus for an automotive vehicle applicable to an automatic vehicular velocity control system to follow up a preceding vehicle, an inter-vehicle distance detector is provided which is disposed on the vehicle so as to be oriented toward a forward detection zone of the vehicle to detect an inter-vehicle distance to the preceding vehicle which is running ahead of the vehicle, to recognize whether the preceding vehicle has entered the forward detection zone and to derive the inter-vehicle distance value lrn (n=1, 2, . . .
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: July 10, 2001
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazutaka Adachi, Takenori Hashizume, Hideo Iwamoto
  • Patent number: 6249738
    Abstract: In apparatus and method for controlling a vehicular velocity for an automotive vehicle, when a controller carries out a preceding vehicle follow-up control to follow up a preceding vehicle which is traveling ahead of the vehicle and is decelerated and a vehicular velocity of the vehicle becomes reduced and has crossed a set lower limit value of the vehicular velocity in a vehicular velocity controllable range, the controller releases the preceding vehicle follow-up control but continues a braking operation through a vehicular brake system using a function generator (Pbrk*=f(t)MPa) to prevent a sudden G drop from occurring.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: June 19, 2001
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akira Higashimata, Hideo Iwamoto, Takenori Hashizume