Patents by Inventor Takenori OIDA

Takenori OIDA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957472
    Abstract: A brain measurement apparatus includes: a magnetoencephalograph including optically pumped magnetometers, magnetic sensors for measuring geomagnetic field at positions of the optically pumped magnetometers, magnetic sensors for measuring a fluctuating magnetic field at the positions of the optically pumped magnetometers, nulling coils for cancelling the geomagnetic field, and an active shield coil for cancelling the fluctuating magnetic field; an MRI apparatus including nulling coils for applying a static magnetic field and a gradient magnetic field, a transmission coil, and a receive coil; and a control device that, when measuring a brain's magnetic field, controls currents supplied to the nulling coils and the active shield coil based on measured values of the magnetic sensors and, when measuring an MR image, controls the static magnetic field and the gradient magnetic field by controlling currents supplied to the nulling coils and generates an MR image from an output of the receive coil.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: April 16, 2024
    Assignees: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Takahiro Moriya, Takenori Oida, Akinori Saito, Motohiro Suyama, Tetsuo Kobayashi
  • Patent number: 11914012
    Abstract: A brain measurement apparatus includes: a magnetoencephalograph including optically pumped magnetometers, magnetic sensors for measuring a static magnetic field at positions of the optically pumped magnetometers, and a nulling coil for canceling the static magnetic field; an MRI apparatus including a permanent magnet, a gradient magnetic field coil, a transmission coil, and a receive coil for detecting a nuclear magnetic resonance signal; and a control device that, when measuring the brain's magnetic field, controls a current to be supplied to the nulling coil based on measured values of the magnetic sensors and operates so as to cancel a static magnetic field at the position of each of the optically pumped magnetometers and, when measuring an MR image, controls the gradient magnetic field by controlling a current to be supplied to the gradient magnetic field coil and generates an MR image based on an output of the receive coil.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: February 27, 2024
    Assignees: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Takenori Oida, Takahiro Moriya, Akinori Saito, Motohiro Suyama, Tetsuo Kobayashi
  • Patent number: 11874348
    Abstract: Provided is a brain measurement system including: a geomagnetic correction coil; a geomagnetic gradient correction coil; a transmission coil; a receiving coil; a plurality of resonance adjustment circuits; a plurality of OPM modules provided corresponding to each of the plurality of resonance adjustment circuits for detecting a signal having a resonance frequency output from the resonance adjustment circuit; and a control device for generating an MR image based on the signal detected by the OPM module, wherein, when a direction parallel to a central axis of a head portion of a subject is defined as a Z-axis direction, the resonance frequency related to each of the plurality of resonance adjustment circuits is set according to a magnetic field gradient in the Z-axis direction generated by control of a position of the corresponding receiving coil in the Z-axis direction and a tilted magnetic field.
    Type: Grant
    Filed: August 19, 2022
    Date of Patent: January 16, 2024
    Assignees: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Takenori Oida, Takahiro Moriya, Akinori Saito, Motohiro Suyama, Tetsuo Kobayashi
  • Patent number: 11835603
    Abstract: An optically pumped magnetometer includes cells configured to form a first cell region and a second cell region on a measurement target, a pump laser, a probe laser, a first optical system configured to cause pump light to be incident on the first cell region, a second optical system configured to cause the pump light having passed through the first cell region to be incident on the second cell region, a third optical system configured to cause first probe light to be incident on the first cell region, a fourth optical system configured to cause second probe light to be incident on the second cell region, detection portions configured to detect the first probe light having passed through the first cell region and the second probe light having passed through the second cell region, and a deriving portion configured to derive an intensity of a magnetic field.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: December 5, 2023
    Assignees: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Akinori Saito, Takahiro Moriya, Takenori Oida, Motohiro Suyama, Tetsuo Kobayashi
  • Patent number: 11619689
    Abstract: An optically pumped magnetometer 1 includes: a cell 2; a pump laser 7 that emits pump light; one or more pump light mirrors that cause the pump light guided in a first direction; a probe laser 8 that emits probe light; a splitting unit 12 that splits the probe light into multiple light components; one or more probe light mirrors that cause each of the probe light components guided in a second direction, which is a direction perpendicular to the first direction; a detection unit that detects each of the probe light components perpendicular to the pump light inside the cell 2; and a derivation unit that derives a magnetic field corresponding to a region where each of the probe light components and the pump light are perpendicular to each other based on a detection result of the detection unit.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: April 4, 2023
    Assignees: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Akinori Saito, Takahiro Moriya, Takenori Oida, Motohiro Suyama, Tetsuo Kobayashi
  • Publication number: 20230061021
    Abstract: Provided is a brain measurement system including: a geomagnetic correction coil; a geomagnetic gradient correction coil; a transmission coil; a receiving coil; a plurality of resonance adjustment circuits; a plurality of OPM modules provided corresponding to each of the plurality of resonance adjustment circuits for detecting a signal having a resonance frequency output from the resonance adjustment circuit; and a control device for generating an MR image based on the signal detected by the OPM module, wherein, when a direction parallel to a central axis of a head portion of a subject is defined as a Z-axis direction, the resonance frequency related to each of the plurality of resonance adjustment circuits is set according to a magnetic field gradient in the Z-axis direction generated by control of a position of the corresponding receiving coil in the Z-axis direction and a tilted magnetic field.
    Type: Application
    Filed: August 19, 2022
    Publication date: March 2, 2023
    Applicants: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Takenori OIDA, Takahiro MORIYA, Akinori SAITO, Motohiro SUYAMA, Tetsuo KOBAYASHI
  • Publication number: 20220386888
    Abstract: A brain measurement apparatus includes: a static magnetic field forming unit for forming a static magnetic field in a measurement area; a gradient magnetic field coil for forming a gradient magnetic field in the measurement area; a transmission coil for transmitting a transmission pulse toward a subject in the measurement area; a detection coil for detecting a nuclear magnetic resonance signal generated in the subject by transmission of the transmission pulse; and a generator for generating an MR image based on the nuclear magnetic resonance signal detected by the detection coil.
    Type: Application
    Filed: June 1, 2022
    Publication date: December 8, 2022
    Applicants: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Takahiro MORIYA, Takenori OIDA, Akinori SAITO, Motohiro SUYAMA, Tetsuo KOBAYASHI
  • Publication number: 20220386873
    Abstract: A brain measurement apparatus configured to generate an MR image and a brain's magnetic field distribution of a subject includes: an MRI module having a transmission coil configured to transmit a transmission pulse toward the subject and a detection coil configured to detect a nuclear magnetic resonance signal generated in the subject by the transmission pulse; an optically pumped magnetometer configured to detect a brain's magnetic field of the subject; a generator configured to generate the MR image based on the nuclear magnetic resonance signal detected by the detection coil and generating the brain's magnetic field distribution based on the brain's magnetic field detected by the optically pumped magnetometer; a marker displayed on the MR image generated by the generator; and a helmet-type frame to which the detection coil, the optically pumped magnetometer, and the marker are attached and which is attached to a head of the subject.
    Type: Application
    Filed: June 1, 2022
    Publication date: December 8, 2022
    Applicants: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Takenori OIDA, Takahiro MORIYA, Akinori SAITO, Motohiro SUYAMA, Tetsuo KOBAYASHI
  • Publication number: 20220390533
    Abstract: An optically pumped magnetometer includes cells configured to form a first cell region and a second cell region on a measurement target, a pump laser, a probe laser, a first optical system configured to cause pump light to be incident on the first cell region, a second optical system configured to cause the pump light having passed through the first cell region to be incident on the second cell region, a third optical system configured to cause first probe light to be incident on the first cell region, a fourth optical system configured to cause second probe light to be incident on the second cell region, detection portions configured to detect the first probe light having passed through the first cell region and the second probe light having passed through the second cell region, and a deriving portion configured to derive an intensity of a magnetic field.
    Type: Application
    Filed: June 1, 2022
    Publication date: December 8, 2022
    Applicants: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Akinori SAITO, Takahiro MORIYA, Takenori OIDA, Motohiro SUYAMA, Tetsuo KOBAYASHI
  • Patent number: 11500043
    Abstract: A magnetoencephalograph M1 includes: multiple pump-probe type optically pumped magnetometers 1A; a bias magnetic field forming coil 15 for applying a bias magnetic field in the same direction as a direction of pump light of each of the multiple pump-probe type optically pumped magnetometers 1A and in a direction approximately parallel to a scalp; a control device 5 that determines a current for the bias magnetic field forming coil and outputs a control signal corresponding to the determined current; and a coil power supply 6 that outputs a current to the bias magnetic field forming coil in response to the control signal output from the control device.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: November 15, 2022
    Assignees: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Akinori Saito, Takahiro Moriya, Takenori Oida, Motohiro Suyama, Tetsuo Kobayashi
  • Publication number: 20210389397
    Abstract: A magnetoencephalograph M1 includes: multiple pump-probe type optically pumped magnetometers 1A; a bias magnetic field forming coil 15 for applying a bias magnetic field in the same direction as a direction of pump light of each of the multiple pump-probe type optically pumped magnetometers 1A and in a direction approximately parallel to a scalp; a control device 5 that determines a current for the bias magnetic field forming coil and outputs a control signal corresponding to the determined current; and a coil power supply 6 that outputs a current to the bias magnetic field forming coil in response to the control signal output from the control device.
    Type: Application
    Filed: June 14, 2021
    Publication date: December 16, 2021
    Applicants: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Akinori SAITO, Takahiro MORIYA, Takenori OIDA, Motohiro SUYAMA, Tetsuo KOBAYASHI
  • Publication number: 20210389400
    Abstract: A brain measurement apparatus includes: a magnetoencephalograph including optically pumped magnetometers, magnetic sensors for measuring a static magnetic field at positions of the optically pumped magnetometers, and a nulling coil for canceling the static magnetic field; an MRI apparatus including a permanent magnet, a gradient magnetic field coil, a transmission coil, and a receive coil for detecting a nuclear magnetic resonance signal; and a control device that, when measuring the brain's magnetic field, controls a current to be supplied to the nulling coil based on measured values of the magnetic sensors and operates so as to cancel a static magnetic field at the position of each of the optically pumped magnetometers and, when measuring an MR image, controls the gradient magnetic field by controlling a current to be supplied to the gradient magnetic field coil and generates an MR image based on an output of the receive coil.
    Type: Application
    Filed: June 14, 2021
    Publication date: December 16, 2021
    Applicants: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Takenori OIDA, Takahiro MORIYA, Akinori SAITO, Motohiro SUYAMA, Tetsuo KOBAYASHI
  • Publication number: 20210389396
    Abstract: An optically pumped magnetometer 1 includes: a cell 2; a pump laser 7 that emits pump light; one or more pump light mirrors that cause the pump light guided in a first direction; a probe laser 8 that emits probe light; a splitting unit 12 that splits the probe light into multiple light components; one or more probe light mirrors that cause each of the probe light components guided in a second direction, which is a direction perpendicular to the first direction; a detection unit that detects each of the probe light components perpendicular to the pump light inside the cell 2; and a derivation unit that derives a magnetic field corresponding to a region where each of the probe light components and the pump light are perpendicular to each other based on a detection result of the detection unit.
    Type: Application
    Filed: June 14, 2021
    Publication date: December 16, 2021
    Applicants: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Akinori SAITO, Takahiro MORIYA, Takenori OIDA, Motohiro SUYAMA, Tetsuo KOBAYASHI
  • Publication number: 20210386346
    Abstract: A magnetoencephalograph M1 includes: multiple optically pumped magnetometers 1A that measure a brain's magnetic field; multiple magnetic sensors for geomagnetic field cancellation 2 that measure a magnetic field; multiple magnetic sensors for active shield 3 that measure a fluctuating magnetic field; a geomagnetic field nulling coil; an active shield coil 9; a control device 5 that determines a current to generate a magnetic field for canceling the magnetic field based on measured values of the multiple magnetic sensors for geomagnetic field cancellation 2, determines a current to generate a magnetic field for canceling the fluctuating magnetic field based on measured values of the multiple magnetic sensors for active shield 3, and outputs a control signal corresponding to each of the determined currents; and a coil power supply 6 that outputs a current to each coil in response to the control signal.
    Type: Application
    Filed: June 14, 2021
    Publication date: December 16, 2021
    Applicants: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Takahiro MORIYA, Takenori OIDA, Akinori SAITO, Motohiro SUYAMA, Tetsuo KOBAYASHI
  • Publication number: 20210386347
    Abstract: A brain measurement apparatus includes: a magnetoencephalograph including optically pumped magnetometers, magnetic sensors for measuring geomagnetic field at positions of the optically pumped magnetometers, magnetic sensors for measuring a fluctuating magnetic field at the positions of the optically pumped magnetometers, nulling coils for cancelling the geomagnetic field, and an active shield coil for cancelling the fluctuating magnetic field; an MRI apparatus including nulling coils for applying a static magnetic field and a gradient magnetic field, a transmission coil, and a receive coil; and a control device that, when measuring a brain's magnetic field, controls currents supplied to the nulling coils and the active shield coil based on measured values of the magnetic sensors and, when measuring an MR image, controls the static magnetic field and the gradient magnetic field by controlling currents supplied to the nulling coils and generates an MR image from an output of the receive coil.
    Type: Application
    Filed: June 14, 2021
    Publication date: December 16, 2021
    Applicants: HAMAMATSU PHOTONICS K.K., Kyoto University
    Inventors: Takahiro MORIYA, Takenori OIDA, Akinori SAITO, Motohiro SUYAMA, Tetsuo KOBAYASHI