Patents by Inventor Takeshi Nogami

Takeshi Nogami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130307153
    Abstract: An interconnect structure located on a semiconductor substrate within a dielectric material positioned atop the semiconductor substrate is provided having an opening within the dielectric material, the opening includes an electrically conductive material extending from the bottom to the top, and contacting the sidewall; a first layer located on the sidewall of the opening, the first layer is made from a material including titanium oxide or titanium silicon oxide; a second layer located between the first layer and the electrically conductive material, the second layer is made from a material selected from the group TiXOb, TiXSiaOb, XOb, and XSiaOb, X is Mn, Al, Sn, In, or Zr; and a third layer located along a top surface of the electrically conductive material, the third layer is made from a material selected from the group TiXOb, TiXSiaOb, XOb, and XSiaOb, X is Mn, Al, Sn, In, or Zr.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel C. Edelstein, Takeshi Nogami
  • Publication number: 20130307150
    Abstract: A structure with improved electromigration resistance and methods for making the same. A structure having improved electromigration resistance includes a bulk interconnect having a dual layer cap and a dielectric capping layer. The dual layer cap includes a bottom metallic portion and a top metal oxide portion. Preferably the metal oxide portion is MnO or MnSiO and the metallic portion is Mn or CuMn. The structure is created by doping the interconnect with an impurity (Mn in the preferred embodiment), and then creating lattice defects at a top portion of the interconnect. The defects drive increased impurity migration to the top surface of the interconnect. When the dielectric capping layer is formed, a portion reacts with the segregated impurities, thus forming the dual layer cap on the interconnect. Lattice defects at the Cu surface can be created by plasma treatment, ion implantation, a compressive film, or other means.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel C. Edelstein, Takeshi Nogami, Christopher Parks, Tsong-Lin Tai
  • Patent number: 8586468
    Abstract: An arrangement of semiconductor chips is provided. The arrangement includes a plurality of stacked semiconductor chips each including an integrated circuit. At least one via is formed through the thickness of at least one of the semiconductor chips. A carbon nanotube conductor is formed in the via. The conductor has first and second opposite ends. The first end of the conductor is selectively interconnected with the integrated circuit of its semiconductor chip and the second end of the conductor is selectively interconnected with the integrated circuit of another of the semiconductor chips.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: November 19, 2013
    Assignees: Sony Corporation, Sony Electronics Inc.
    Inventors: Takeshi Nogami, Masanaga Fukasawa
  • Publication number: 20130285245
    Abstract: A metal interconnect structure and a method of manufacturing the metal interconnect structure. Manganese (Mn) is incorporated into a copper (Cu) interconnect structure in order to modify the microstructure to achieve bamboo-style grain boundaries in sub-90 nm technologies. Preferably, bamboo grains are separated at distances less than the “Blech” length so that copper (Cu) diffusion through grain boundaries is avoided. The added Mn also triggers the growth of Cu grains down to the bottom surface of the metal line so that a true bamboo microstructure reaching to the bottom surface is formed and the Cu diffusion mechanism along grain boundaries oriented along the length of the metal line is eliminated.
    Type: Application
    Filed: March 25, 2013
    Publication date: October 31, 2013
    Inventors: Cyril Cabral, Jr., Jeffrey P. Gambino, Qiang Huang, Takeshi Nogami, Kenneth P. Rodbell
  • Patent number: 8558284
    Abstract: An integrated circuit comprising an electromigration barrier includes a line, the line comprising a first conductive material, the line further comprising a plurality of line segments separated by one or more electromigration barriers, wherein the one or more electromigration barriers comprise a second conductive material that isolates electromigration effects within individual segments of the line.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: David V. Horak, Takeshi Nogami, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8525232
    Abstract: A semiconductor structure which includes a semiconductor substrate and a metal gate structure formed in a trench or via on the semiconductor substrate. The metal gate structure includes a gate dielectric; a wetting layer selected from the group consisting of cobalt and nickel on the gate dielectric lining the trench or via and having an oxygen content of no more than about 200 ppm (parts per million) oxygen; and an aluminum layer to fill the remainder of the trench or via. There is also disclosed a method of forming a semiconductor structure in which a wetting layer is formed from cobalt amidinate or nickel amidinate deposited by a chemical vapor deposition process.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: September 3, 2013
    Assignee: International Business Machines Corporation
    Inventors: Takeshi Nogami, Keith K. H. Wong, Chih-Chao Yang
  • Publication number: 20130214414
    Abstract: Interconnect structures and methods of manufacturing the same are disclosed herein. The method includes forming a barrier layer within a structure and forming an alloy metal on the barrier layer. The method further includes forming a pure metal on the alloy metal, and reflowing the pure metal such that the pure metal migrates to a bottom of the structure, while the alloy metal prevents exposure of the barrier layer. The method further includes completely filling in the structure with additional metal.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 22, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel C. EDELSTEIN, Takeshi NOGAMI
  • Patent number: 8497202
    Abstract: Interconnect structures and methods of manufacturing the same are disclosed herein. The method includes forming a barrier layer within a structure and forming an alloy metal on the barrier layer. The method further includes forming a pure metal on the alloy metal, and reflowing the pure metal such that the pure metal migrates to a bottom of the structure, while the alloy metal prevents exposure of the barrier layer. The method further includes completely filling in the structure with additional metal.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: July 30, 2013
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Takeshi Nogami
  • Patent number: 8492897
    Abstract: A metal interconnect structure and a method of manufacturing the metal interconnect structure. Manganese (Mn) is incorporated into a copper (Cu) interconnect structure in order to modify the microstructure to achieve bamboo-style grain boundaries in sub-90 nm technologies. Preferably, bamboo grains are separated at distances less than the “Blech” length so that copper (Cu) diffusion through grain boundaries is avoided. The added Mn also triggers the growth of Cu grains down to the bottom surface of the metal line so that a true bamboo microstructure reaching to the bottom surface is formed and the Cu diffusion mechanism along grain boundaries oriented along the length of the metal line is eliminated.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Jeffrey P. Gambino, Qiang Huang, Takeshi Nogami, Kenneth P. Rodbell
  • Patent number: 8492289
    Abstract: A method of forming a barrier layer for metal interconnects of an integrated circuit device includes forming a first cap layer over a top surface of a conductive line of the integrated circuit device in a manner that facilitates a controllable dose of oxygen provided to the top surface of the conductive line, the conductive line comprising a metal formed over a seed layer that is an impurity alloy of the metal; and annealing the integrated circuit device so as to combine diffused impurity atoms of the seed layer with the controllable dose of oxygen, thereby forming an impurity oxide layer at an interface between the first cap layer and the top surface of the conductive line.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Takeshi Nogami, Hosadurga K. Shobha
  • Patent number: 8492265
    Abstract: Two substrates are brought together and placed in a plating bath. In one embodiment, a conductive material is plated in microscopic cavities present at the interface between a first metal pad and a second metal pad to form at least one interfacial plated metal liner portion that adheres to a surface of the first metal pad and a surface of the second metal pad. In another embodiment, at least one metal pad is recessed relative to a dielectric surface before being brought together. The two substrates are placed in a plating bath and a conductive material is plated in the cavity between the first metal pad and the second metal pad to form a contiguous plated metal liner layer that adheres to a surface of the first metal pad and a surface of the second metal pad.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, David V. Horak, Takeshi Nogami, Shom Ponoth
  • Patent number: 8482132
    Abstract: Two substrates are brought together and placed in a plating bath. In one embodiment, a conductive material is plated in microscopic cavities present at the interface between a first metal pad and a second metal pad to form at least one interfacial plated metal liner portion that adheres to a surface of the first metal pad and a surface of the second metal pad. In another embodiment, at least one metal pad is recessed relative to a dielectric surface before being brought together. The two substrates are placed in a plating bath and a conductive material is plated in the cavity between the first metal pad and the second metal pad to form a contiguous plated metal liner layer that adheres to a surface of the first metal pad and a surface of the second metal pad.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: July 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, David V. Horak, Takeshi Nogami, Shom Ponoth
  • Patent number: 8435887
    Abstract: Disclosed is a method which includes forming a copper interconnect within a trench or via in a substrate. Forming the copper interconnect includes forming a ruthenium-containing seed layer on a wall of the trench or via; forming a cobalt sacrificial layer on the ruthenium-containing layer before the ruthenium-containing seed layer being exposed to an environment that is oxidizing with respect to the seed layer; and contacting the cobalt sacrificial layer with a copper plating solution, the copper plating solution dissolving the cobalt sacrificial layer and plating out copper on the unoxidized ruthenium-containing seed layer. Alternatively, the ruthenium-containing seed layer may be replaced with platinum, tungsten nitride, titanium nitride or titanium or iridium. Further alternatively, the cobalt sacrificial layer may be replaced by tin, cadmium, copper or manganese.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: May 7, 2013
    Assignees: International Business Machines Corporation, Kabushiki Kaisha Toshiba
    Inventors: James J. Kelly, Takeshi Nogami, Kazumichi Tsumura
  • Publication number: 20130075908
    Abstract: An interconnect structure and method for fabricating the interconnect structure having enhanced performance and reliability, by minimizing oxygen intrusion into a seed layer and an electroplated copper layer of the interconnect structure, are disclosed. At least one opening in a dielectric layer is formed. A sacrificial oxidation layer disposed on the dielectric layer is formed. The sacrificial oxidation layer minimizes oxygen intrusion into the seed layer and the electroplated copper layer of the interconnect structure. A barrier metal layer disposed on the sacrificial oxidation layer is formed. A seed layer disposed on the barrier metal layer is formed. An electroplated copper layer disposed on the seed layer is formed. A planarized surface is formed, wherein a portion of the sacrificial oxidation layer, the barrier metal layer, the seed layer, and the electroplated copper layer are removed. In addition, a capping layer disposed on the planarized surface is formed.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, JR., Geraud Jean-Michel Dubois, Daniel C. Edelstein, Takeshi Nogami, Daniel P. Sanders
  • Patent number: 8404582
    Abstract: Interconnect structures having self-aligned dielectric caps are provided. At least one metallization level is formed on a substrate. A dielectric cap is selectively deposited on the metallization level.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: David V Horak, Takeshi Nogami, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8399350
    Abstract: Method for fabricating a microelectronic element having an air gap in a dielectric layer thereof. A dielectric cap layer can be formed which has a first portion overlying surfaces of metal lines, the first portion extending a first height above a height of a surface of the dielectric layer, and a second portion overlying the dielectric layer surface and extending a second height above the height of the surface of the dielectric layer, the second height being greater than the first height. After forming the cap layer, a mask can be formed over the cap layer. The mask exposes a surface of only the second portion of the cap layer which has the greater height. Subsequently, an etchant can be directed towards the first and second portions of the cap layer. Material can be removed from the dielectric layer where exposed to the etchant.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: March 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Takeshi Nogami, Shyng-Tsong Chen, David V. Horak, Son V. Nguyen, Shom Ponoth, Chih-Chao Yang
  • Publication number: 20130062769
    Abstract: A metal interconnect structure and a method of manufacturing the metal interconnect structure. Manganese (Mn) is incorporated into a copper (Cu) interconnect structure in order to modify the microstructure to achieve bamboo-style grain boundaries in sub-90 nm technologies. Preferably, bamboo grains are separated at distances less than the “Blech” length so that copper (Cu) diffusion through grain boundaries is avoided. The added Mn also triggers the growth of Cu grains down to the bottom surface of the metal line so that a true bamboo microstructure reaching to the bottom surface is formed and the Cu diffusion mechanism along grain boundaries oriented along the length of the metal line is eliminated.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, JR., Takeshi Nogami, Jeffrey P. Gambino, Qiang Huang, Kenneth P. Rodbell
  • Publication number: 20130037865
    Abstract: A semiconductor structure which includes a semiconductor substrate and a metal gate structure formed in a trench or via on the semiconductor substrate. The metal gate structure includes a gate dielectric; a wetting layer selected from the group consisting of cobalt and nickel on the gate dielectric lining the trench or via and having an oxygen content of no more than about 200 ppm (parts per million) oxygen; and an aluminum layer to fill the remainder of the trench or via. There is also disclosed a method of forming a semiconductor structure in which a wetting layer is formed from cobalt amidinate or nickel amidinate deposited by a chemical vapor deposition process.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takeshi Nogami, Keich Kwong Hon Wong, Chih-Chao Yang
  • Publication number: 20130009282
    Abstract: A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, David V. Horak, Elbert E. Huang, Satyanarayana V. Nitta, Takeshi Nogami, Shom Ponoth, Terry A. Spooner
  • Publication number: 20130012017
    Abstract: A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, David V. Horak, Elbert E. Huang, Satyanarayana V. Nitta, Takeshi Nogami, Shom Ponoth, Terry A. Spooner