Patents by Inventor Takeshi Takamatsu

Takeshi Takamatsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8681476
    Abstract: A solid electrolytic capacitor comprises an insulating substrate in which an anode terminal and a cathode terminal are formed. The anode terminal comprises a first anode section formed on a first surface of the insulating substrate, and a second anode section formed on a second surface of the insulating substrate, which are electrically connected to each other. The cathode terminal comprises a first cathode section formed on the first surface and a second cathode section formed on the second surface, which are electrically connected to each other. A distance between the first anode section and the first cathode section is smaller than a distance between the second anode section and the second cathode section. And an anode section and a cathode section of a capacitor element are electrically connected to the first anode section and the first cathode section respectively.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: March 25, 2014
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Patent number: 8540783
    Abstract: A method of manufacturing a solid electrolytic capacitor includes steps (a) to (e). The steps (a) and (b) provide anode and cathode terminals to an insulating base respectively. The step (c) mounts a capacitor element on the insulating base. The step (d) coats the capacitor element with enclosure resin. The step (e) separates a first region of the insulating base to which the anode and cathode terminals are provided and on which the capacitor element is mounted from a second region of the insulating base which is different from the first region. The step (a) includes a step (a1) forming a first through hole in the insulating base, and a step (a2) plating an inner surface of the first through hole. The step (b) includes a step (b1) forming a second through hole in the insulating base, and a step (b2) plating an inner surface of the second through hole.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: September 24, 2013
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Patent number: 8254087
    Abstract: The solid electrolytic capacitor includes a capacitor element including an anode section, a dielectric film, and a cathode section, a wiring member on which the capacitor element is mounted, and an enclosure resin coating the capacitor element. The wiring member includes an insulating base, a first anode terminal portion connected to the anode section is provided on a first surface of the insulating base on which the capacitor element is mounted, the first anode terminal portion includes a connection part integrally formed therewith for electrically connecting the first anode terminal portion and the anode section to each other, a second anode terminal portion connected to the first anode terminal portion is provided on a second surface of the insulating base opposed to the first surface, and the first and second anode terminal portions are connected by an anode conduction part provided on a side surface of the insulating base.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: August 28, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Publication number: 20120206858
    Abstract: A solid electrolytic capacitor comprises an insulating substrate in which an anode terminal and a cathode terminal are formed. The anode terminal comprises a first anode section formed on a first surface of the insulating substrate, and a second anode section formed on a second surface of the insulating substrate, which are electrically connected to each other. The cathode terminal comprises a first cathode section formed on the first surface and a second cathode section formed on the second surface, which are electrically connected to each other. A distance between the first anode section and the first cathode section is smaller than a distance between the second anode section and the second cathode section. And an anode section and a cathode section of a capacitor element are electrically connected to the first anode section and the first cathode section respectively.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 16, 2012
    Applicant: SANYO Electric Co., Ltd.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Publication number: 20120204389
    Abstract: A method of manufacturing a solid electrolytic capacitor includes steps (a) to (e). The steps (a) and (b) provide anode and cathode terminals to an insulating base respectively. The step (c) mounts a capacitor element on the insulating base. The step (d) coats the capacitor element with enclosure resin. The step (e) separates a first region of the insulating base to which the anode and cathode terminals are provided and on which the capacitor element is mounted from a second region of the insulating base which is different from the first region. The step (a) includes a step (a1) forming a first through hole in the insulating base, and a step (a2) plating an inner surface of the first through hole. The step (b) includes a step (b1) forming a second through hole in the insulating base, and a step (b2) plating an inner surface of the second through hole.
    Type: Application
    Filed: April 23, 2012
    Publication date: August 16, 2012
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Patent number: 8179664
    Abstract: A solid electrolytic capacitor comprises an insulating substrate in which an anode terminal and a cathode terminal are formed. A first anode section and a first cathode section are formed on a first surface of the insulating substrate, so as to be spaced from each other in a first predetermined direction. A second anode section and a second cathode section are formed on a second surface of the insulating substrate, so as to be spaced from each other in a second direction generally perpendicular to the first direction. The anode terminal comprises the first and second anode sections, which are electrically connected to each other. The cathode terminal comprises the first and second cathode sections, which are electrically connected to each other. A capacitor element is arranged on the first surface of the insulating substrate with an anode section thereof being oriented in the first direction.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: May 15, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Patent number: 8179667
    Abstract: A solid electrolytic capacitor includes a capacitor element coated with an enclosure resin, and an insulating substrate in which an anode terminal and a cathode terminal are formed. The anode terminal includes a first anode section formed on a first surface of the insulating substrate, a second anode section formed on a second surface of the insulating substrate, and an anode conductive layer which is formed on a side edge surface of the insulating substrate to electrically connect there anode sections to each other. The cathode terminal includes a first cathode section formed on the first surface, a second cathode section formed on the second surface, and a cathode conductive layer which is formed on the side edge surface of the insulating substrate to electrically connect there cathode sections to each other. And the anode conductive layer and the cathode conductive layer are exposed from the enclosure resin.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: May 15, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Patent number: 8174819
    Abstract: A solid electrolytic capacitor comprises an insulating substrate in which an anode terminal and a cathode terminal are formed. The anode terminal comprises a first anode section formed on a first surface of the insulating substrate, and a second anode section formed on a second surface of the insulating substrate, which are electrically connected to each other. A connection part is formed integrally with the first anode section. The cathode terminal comprises a first cathode section formed on the first surface and a second cathode section formed on the second surface, which are electrically connected to each other. A distance between the first anode section and the first cathode section is smaller than a distance between the second anode section and the second cathode section. And an anode section and a cathode section of a capacitor element are electrically connected to the connection part and the first cathode section respectively.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: May 8, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Publication number: 20100246097
    Abstract: A solid electrolytic capacitor comprises: a capacitor element coated with an enclosure resin; and an insulating substrate in which an anode terminal and a cathode terminal are formed. The anode terminal comprises a first anode section formed on a first surface of the insulating substrate, a second anode section formed on a second surface of the insulating substrate, and an anode conductive layer which is formed on a side edge surface of the insulating substrate to electrically connect there anode sections to each other. The cathode terminal comprises a first cathode section formed on the first surface, a second cathode section formed on the second surface, and a cathode conductive layer which is formed on the side edge surface of the insulating substrate to electrically connect there cathode sections to each other. And the anode conductive layer and the cathode conductive layer are exposed from the enclosure resin.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 30, 2010
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Publication number: 20100246098
    Abstract: A solid electrolytic capacitor comprises an insulating substrate in which an anode terminal and a cathode terminal are formed. A first anode section and a first cathode section are formed on a first surface of the insulating substrate, so as to be spaced from each other in a first predetermined direction. A second anode section and a second cathode section are formed on a second surface of the insulating substrate, so as to be spaced from each other in a second direction generally perpendicular to the first direction. The anode terminal comprises the first and second anode sections, which are electrically connected to each other. The cathode terminal comprises the first and second cathode sections, which are electrically connected to each other. A capacitor element is arranged on the first surface of the insulating substrate with an anode section thereof being oriented in the first direction.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Publication number: 20100238609
    Abstract: A solid electrolytic capacitor comprises an insulating substrate in which an anode terminal and a cathode terminal are formed. The anode terminal comprises a first anode section formed on a first surface of the insulating substrate, and a second anode section formed on a second surface of the insulating substrate, which are electrically connected to each other. A connection part is formed integrally with the first anode section. The cathode terminal comprises a first cathode section formed on the first surface and a second cathode section formed on the second surface, which are electrically connected to each other. A distance between the first anode section and the first cathode section is smaller than a distance between the second anode section and the second cathode section. And an anode section and a cathode section of a capacitor element are electrically connected to the connection part and the first cathode section respectively.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 23, 2010
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Publication number: 20100226071
    Abstract: The solid electrolytic capacitor comprises: a capacitor element including an anode section, a dielectric film, and a cathode section; a wiring member on which the capacitor element is mounted; and an enclosure resin coating the capacitor element. The wiring member includes an insulating base, a first anode terminal portion connected to the anode section is provided on a first surface of the insulating base on which the capacitor element is mounted, the first anode terminal portion includes a connection part integrally formed therewith for electrically connecting the first anode terminal portion and the anode section to each other, a second anode terminal portion connected to the first anode terminal portion is provided on a second surface of the insulating base opposed to the first surface, and the first and second anode terminal portions are connected by an anode conduction part provided on a side surface of the insulating base.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 9, 2010
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Yasuko Ibata, Hiroya Nishimoto, Takeshi Takamatsu
  • Publication number: 20100157510
    Abstract: A solid electrolytic capacitor includes a capacitor element including: an anode body; a dielectric coating film deposited on a surface of the anode body; a conductive polymer layer deposited on the dielectric coating film; and a mixture layer deposited on the conductive polymer layer and containing a conductive matrix and carbon nanotubes, the anode body, the dielectric coating film, the conductive polymer layer and the mixture layer being deposited in sequence.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 24, 2010
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Yuji Miyachi, Kohei Goto, Koichi Morita, Takeshi Takamatsu
  • Patent number: 7262955
    Abstract: An anode terminal or a cathode terminal is provided with an exposure portion that extends substantially perpendicularly to an arrangement direction of the two terminals and that have an end face exposed on a side face of a housing. At least the end face on the exposure portion is plated for improving the solder wettability. Furthermore, a front end portion of the exposure portion is bent upwards along a peripheral face of the housing.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: August 28, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hideki Ishida, Eizo Fujii, Takeshi Takamatsu
  • Publication number: 20060262491
    Abstract: An anode terminal or a cathode terminal is provided with an exposure portion that extends substantially perpendicularly to an arrangement direction of the two terminals and that have an end face exposed on a side face of a housing. At least the end face on the exposure portion is plated for improving the solder wettability. Furthermore, a front end portion of the exposure portion is bent upwards along a peripheral face of the housing.
    Type: Application
    Filed: May 25, 2006
    Publication date: November 23, 2006
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Hideki Ishida, Eizo Fujii, Takeshi Takamatsu
  • Patent number: 7113391
    Abstract: An anode terminal or a cathode terminal is provided with an exposure portion that extends substantially perpendicularly to an arrangement direction of the two terminals and that have an end face exposed on a side face of a housing. At least the end face on the exposure portion is plated for improving the solder wettability. Furthermore, a front end portion of the exposure portion is bent upwards along a peripheral face of the housing.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: September 26, 2006
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hideki Ishida, Eizo Fujii, Takeshi Takamatsu
  • Publication number: 20060012946
    Abstract: An anode terminal or a cathode terminal is provided with an exposure portion that extends substantially perpendicularly to an arrangement direction of the two terminals and that have an end face exposed on a side face of a housing. At least the end face on the exposure portion is plated for improving the solder wettability. Furthermore, a front end portion of the exposure portion is bent upwards along a peripheral face of the housing.
    Type: Application
    Filed: July 1, 2005
    Publication date: January 19, 2006
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Hideki Ishida, Eizo Fujii, Takeshi Takamatsu
  • Patent number: 6362950
    Abstract: This invention relates to solid electrolyte capacitors and is intended to decrease the contact resistance between the body of the capacitor and lead frames and the internal resistance of these components. The, invention provides a process for producing a solid electrolyte capacitor by forming a dielectric oxide film on an anode body of valve metal, forming a cathode layer of solid conductive substance on the oxide film to prepare a capacitor element, coating the cathode layer of the capacitor element with a carbon layer, coating the carbon layer with a silver paste layer to prepare a capacitor body, and bonding a lead frame to the silver paste layer of the. capacitor body with a silver adhesive. While the capacitor element coated with the carbon layer and a silver paste are being vibrated relative to each other, the capacitor element is dipped in the silver paste and withdrawn therefrom in the direction of the vibration, whereby the carbon layer is coated with the silver paste layer.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: March 26, 2002
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hidenori Kamigawa, Yasuhiro Kishimoto, Youichi Kojima, Takeshi Takamatsu, Hiroshi Yakui
  • Patent number: 6313979
    Abstract: The invention provides a process for producing solid electrolyte capacitors by forming a dielectric oxide film and a first cathode layer of solid conductive substance over the surface of an anode body of valve metal, and forming a second cathode layer of conductive high polymer on the first cathode layer by electrolytic oxidative polymerization. The second cathode layer is formed by immersing in the electrolyte the anode body formed over the surface thereof with the oxide film and the first cathode layer, feeding a positive voltage with an external electrode piece in contact with the first cathode layer in the electrolyte, and shifting the feeding point at a predetermined time interval.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: November 6, 2001
    Assignees: Sanyo Electric Co., Ltd., Sanyo Electronic Components Co., Ltd.
    Inventors: Yutaka Taketani, Kakusyo Yoshida, Hidenori Kamigawa, Yasuhiro Kishimoto, Youichi Kojima, Takeshi Takamatsu
  • Patent number: 6168639
    Abstract: The invention provides a process for producing solid electrolyte capacitors by forming a dielectric oxide film and a first cathode layer of solid conductive substance over the surface of an anode body of valve metal, and forming a second cathode layer of conductive high polymer on the first cathode layer by electrolytic oxidative polymerization. In forming the second cathode layer, the pH of the electrolyte to be used for electrolytic oxidative polymerization is maintained within a predetermined range by adding an acid or alkali to the electrolyte. Since the pH of the electrolyte remains substantially unaltered by the polymerization according to the invention, the electrolyte is repeatedly usable while permitting the resulting second cathode layers to retain the desired electric conductivity.
    Type: Grant
    Filed: October 6, 1998
    Date of Patent: January 2, 2001
    Assignees: Sanyo Electric Co., Ltd., Sanyo Electronic Components Co., Ltd.
    Inventors: Yutaka Taketani, Kakusyo Yoshida, Hidenori Kamigawa, Yasuhiro Kishimoto, Youichi Kojima, Takeshi Takamatsu