Patents by Inventor Takeyoshi Nakayama

Takeyoshi Nakayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11518857
    Abstract: A sizing agent for matrix-resin-reinforcement fibers that simultaneously attains excellent cohesion and abrasion resistance of sized fibers, uniform size application on fiber surface and good bonding between sized fiber and a matrix resin; a synthetic fiber strand sized therewith; and a fiber-reinforced composite material reinforced by the sized fiber strand. The sizing agent contains a polyamide (A), a carbodiimide group-containing compound (B) and water (C), wherein the polyamide (A) has a melt viscosity ranging from 100 to 15,000 mPa·s at 150° C. and the compound (B) has at least two carbodiimide groups per molecule. The polyamide (A) is preferably a water-soluble polyamide.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: December 6, 2022
    Assignee: MATSUMOTO YUSHI-SEIYAKU CO., LTD.
    Inventors: Atsushi Yabumoto, Kentaro Suzuki, Takeyoshi Nakayama
  • Publication number: 20210122888
    Abstract: A sizing agent for matrix-resin-reinforcement fiber, a synthetic fiber strand sized therewith, and a fiber-reinforced composite material reinforced by the sized fiber strand. The sizing agent for reinforcement fiber contains a polyamide (A), a carbodiimide group-containing compound (B) and water (C), wherein the polyamide (A) has a melt viscosity ranging from 100 to 15,000 mP·s at 150° C. and the compound (B) has at least two carbodiimide groups per molecule. The polyamide (A) is preferably a water-soluble polyamide.
    Type: Application
    Filed: August 7, 2018
    Publication date: April 29, 2021
    Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.
    Inventors: Atsushi YABUMOTO, Kentaro SUZUKI, Takeyoshi NAKAYAMA
  • Patent number: 9200384
    Abstract: An acrylic-fiber finish for carbon fiber production is prepared into a stable emulsion and applied to a carbon-fiber precursor to prevent gumming up of finish components in precursor production and carbon fiber fusing in baking process. The acrylic-fiber finish is used for carbon-fiber production and includes a modified silicone having a modifying group containing a nitrogen atom and an acidic phosphate ester represented by the following chemical formula (1). where R1 represents a C6-22 alkyl or alkenyl group, A represents a C2-4 alkylene group, and AO represents an oxyalkylene group, n represents a mole number of oxyalkylene group and is an integer ranging from 0 to 20, and each of a and b is an integer of 1 or 2 and meets the equation a+b=3.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: December 1, 2015
    Assignee: MATSUMOTO YUSHI-SEIYAKU CO., LTD.
    Inventors: Yoshio Hashimoto, Takeyoshi Nakayama, Jun Takaya, Mikio Nakagawa
  • Publication number: 20150044125
    Abstract: An acrylic-fiber finish for carbon fiber production is prepared into a stable emulsion and applied to a carbon-fiber precursor to prevent gumming up of finish components in precursor production and carbon fiber fusing in baking process. The acrylic-fiber finish is used for carbon-fiber production and includes a modified silicone having a modifying group containing a nitrogen atom and an acidic phosphate ester represented by the following chemical formula (1). where R1 represents a C6-22 alkyl or alkenyl group, A represents a C2-4 alkylene group, and AO represents an oxyalkylene group, n represents a mole number of oxyalkylene group and is an integer ranging from 0 to 20, and each of a and b is an integer of 1 or 2 and meets the equation a+b=3.
    Type: Application
    Filed: February 14, 2013
    Publication date: February 12, 2015
    Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.
    Inventors: Yoshio Hashimoto, Takeyoshi Nakayama, Jun Takaya, Mikio Nakagawa
  • Patent number: 8323743
    Abstract: An acrylic-fiber finish for use in carbon-fiber production contributes to high tenacity of resultant carbon fiber. The acrylic-fiber finish for carbon-fiber production includes an epoxy-polyether-modified silicone and a surfactant. The weight ratios of the epoxy-polyether-modified silicone and the surfactant in the total of the non-volatile components of the finish respectively range from 1 to 95 wt % and from 5 to 50 wt %. The carbon fiber production method includes a fiber production process for producing an acrylic fiber for carbon-fiber production by applying the finish to an acrylic fiber which is a basic material for the acrylic fiber for carbon-fiber production; an oxidative stabilization process for converting the acrylic fiber produced in the fiber production process into oxidized fiber in an oxidative atmosphere at 200 to 300 deg.C.; and a carbonization process for carbonizing the oxidized fiber in an inert atmosphere at 300 to 2,000 deg.C.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: December 4, 2012
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Takeyoshi Nakayama, Yoshio Hashimoto, Mikio Nakagawa
  • Publication number: 20120021125
    Abstract: An acrylic-fiber finish for use in carbon-fiber production contributes to high tenacity of resultant carbon fiber. The acrylic-fiber finish for carbon-fiber production includes an epoxy-polyether-modified silicone and a surfactant. The weight ratios of the epoxy-polyether-modified silicone and the surfactant in the total of the non-volatile components of the finish respectively range from 1 to 95 wt % and from 5 to 50 wt %. The carbon fiber production method includes a fiber production process for producing an acrylic fiber for carbon-fiber production by applying the finish to an acrylic fiber which is a basic material for the acrylic fiber for carbon-fiber production; an oxidative stabilization process for converting the acrylic fiber produced in the fiber production process into oxidized fiber in an oxidative atmosphere at 200 to 300 deg.C.; and a carbonization process for carbonizing the oxidized fiber in an inert atmosphere at 300 to 2,000 deg.C.
    Type: Application
    Filed: May 21, 2010
    Publication date: January 26, 2012
    Applicant: MATSUMOTO YUSHI-SEIYAKU CO., LTD.
    Inventors: Takeyoshi Nakayama, Yoshio Hashimoto, Mikio Nakagawa