Patents by Inventor Takuhiro Miyuki

Takuhiro Miyuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180076461
    Abstract: A method for forming an electrode for a lithium ion battery is disclosed. The method includes preparing a mixture slurry, coating the mixture slurry onto a current collector body, and heating the mixture slurry coating to form an active substance layer. The slurry mixture can be prepared by mixing a polyimide precursor solution and active substance particles. The polyimide resin in the active substance layer is porous due to the method.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 15, 2018
    Inventors: Hiroshi YAMADA, Kazuki SAWA, Yoshihito NIMURA, Yuusuke EDA, Yasue OKUYAMA, Takuhiro MIYUKI, Tetsuo SAKAI
  • Patent number: 9330805
    Abstract: Provided is a novel lithium silicate-based material useful as a positive electrode material for lithium ion secondary battery. The lithium silicate-based compound is represented by Li1.5FeSiO4.25. The lithium silicate-based compound is a compound including: lithium (Li); iron (Fe); silicon (Si); and oxygen (O), and expressed by a composition formula, Li1+2?FeSiO4+??c (?0.25???0.25, 0?c?0.5). The lithium silicate-based compound, of which iron (Fe) is trivalent, exerts a remarkable chemical stability as compared to Li2FeSiO4.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: May 3, 2016
    Assignees: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Akira Kojima, Toshikatsu Kojima, Mitsuharu Tabuchi, Tetsuo Sakai, Masanori Morishita, Takuhiro Miyuki, Junichi Niwa, Masataka Nakanishi, Yuya Sato, Kazuhito Kawasumi, Masakazu Murase
  • Patent number: 9315390
    Abstract: A production process for lithium-silicate-based compound according to the present invention is characterized in that: a lithium-silicate compound being expressed by Li2SiO3 is reacted with a transition-metal-element-containing substance including at least one member being selected from the group consisting of iron and manganese at 550° C. or less within a molten salt including at least one member being selected from the group consisting of alkali-metal nitrates as well as alkali-metal hydroxides in an atmosphere in the presence of a mixed gas including carbon dioxide and a reducing gas. In accordance with the present invention, it is possible to produce lithium-silicate-based materials, which are useful as a positive-electrode active material for lithium-ion secondary battery, and the like, at low temperatures by means of relatively easy means.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: April 19, 2016
    Assignees: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Toshikatsu Kojima, Takuhiro Miyuki, Tetsuo Sakai, Akira Kojima, Junichi Niwa, Hitotoshi Murase, Kazuhito Kawasumi
  • Patent number: 9269954
    Abstract: The present invention is one which provides a production process for lithium-silicate-system compound, the production process being characterized in that: a lithium-silicate compound being expressed by Li2SiO3 is reacted with a substance including at least one member of transition-metal elements that is selected from the group consisting of iron and manganese at 400-650° C. in a molten salt of a carbonate mixture comprising lithium carbonate and at least one member of alkali-metal carbonates that is selected from the group consisting of potassium carbonate, sodium carbonate, rubidium carbonate and cesium carbonate in a mixed-gas atmosphere including carbon dioxide and a reducing gas; and a positive-electrode active material for lithium-ion secondary battery that comprises a lithium-silicate-system compound being obtained by the aforesaid process.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: February 23, 2016
    Assignees: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Toshikatsu Kojima, Tetsuo Sakai, Takuhiro Miyuki, Yasue Okuyama, Akira Kojima, Junichi Niwa, Hitotoshi Murase
  • Patent number: 9082525
    Abstract: A lithium silicate-based compound according to the present invention is expressed by a general formula, Li(2?a+b)AaMn(1?x?y)CoxMySiO(4+?)Cl? (In the formula: “A” is at least one element selected from the group consisting of Na, K, Rb and Cs; “M” is at least one member selected from the group consisting of Mg, Ca, Al, Ni, Fe, Nb, Ti, Cr, Cu, Zn, Zr, V, Mo and W; and the respective subscripts appear to be as follows: 0?“a”<0.2; 0?“b”<1; 0<“x”<1; 0?“y”?0.5; ?0.25?“?”?1.25; and 0?“?”?0.05). The lithium silicate-based compound is used as a positive-electrode active material for secondary battery whose discharge average voltage is higher, and which is able to sorb and desorb lithium ions.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: July 14, 2015
    Assignees: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Akira Kojima, Toshikatsu Kojima, Mitsuharu Tabuchi, Tetsuo Sakai, Takuhiro Miyuki, Junichi Niwa, Kazuhito Kawasumi, Masakazu Murase
  • Patent number: 8940436
    Abstract: Provided is a sulfur-modified polyacrylonitrile manufacturing method that is characterized in that a starting base powder that comprises sulfur powder and polyacrylonitrile powder is mixed and the mixture is heated in a non-oxidizing environment while outflow of sulfur vapor is prevented. Also provided are a cathode for lithium batteries that uses, as the active substance, the sulfur-modified polyacrylonitrile manufactured with the method, and a lithium secondary battery that includes the cathode as a component element. This enables the practical use of an inexpensive sulfur-based material as the cathode material for lithium secondary batteries, and in particular, a sulfur-based cathode material that enables higher output and has excellent cycle life characteristics, as well as other characteristics, and secondary lithium batteries using the same can be obtained.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: January 27, 2015
    Assignees: National Institute of Advanced Industrial Science and Technology, Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Takuhiro Miyuki, Tetsuo Sakai, Junichi Niwa, Hitotoshi Murase
  • Publication number: 20150017534
    Abstract: Disclosed is a resin composition for positive electrodes of lithium ion cells, which imparts strong adhesiveness and electrolyte injectability and shows good discharge and charge characteristics and input-output characteristics with smaller amount of a binder. The resin composition for positive electrodes of lithium ion cells is a resin composition for positive electrodes of lithium ion cells, which comprises a polyimide precursor whose average thermal linear expansion coefficient in the range of 20° C. to 200° C. after being imidized is 3 to 50 ppm, and/or a polyimide whose average thermal linear expansion coefficient in the range of 20° C. to 200° C. is 3 to 50 ppm, and a positive electrode active compound, wherein the positive electrode active compound is one obtained by coating the surface of a composite oxide containing lithium with a lithium ion conductive material.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 15, 2015
    Inventors: Takuhiro Miyuki, Yasue Okuyama, Tetsuo Sakai, Tomoyuki Yuba, Natsuko Chayama, Masao Tomikawa
  • Publication number: 20140332718
    Abstract: A lithium silicate-based compound according to the present invention is expressed by a general formula, Li(2?a+b)AaMn(1?x?y)CoxMySiO(4+?)Cl? (In the formula: “A” is at least one element selected from the group consisting of Na, K, Rb and Cs; “M” is at least one member selected from the group consisting of Mg, Ca, Al, Ni, Fe, Nb, Ti, Cr, Cu, Zn, Zr, V, Mo and W; and the respective subscripts appear to be as follows: 0?“a”<0.2; 0?“b”<1; 0<“x”<1; 0?“y”?0.5; ?0.25?“?”?1.25; and 0?“?”?0.05). The lithium silicate-based compound is used as a positive-electrode active material for secondary battery whose discharge average voltage is higher, and which is able to sorb and desorb lithium ions.
    Type: Application
    Filed: October 12, 2012
    Publication date: November 13, 2014
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Akira Kojima, Toshikatsu Kojima, Mitsuharu Tabuchi, Tetsuo Sakai, Takuhiro Miyuki, Junichi Niwa, Kazuhito Kawasumi, Masakazu Murase
  • Publication number: 20140231721
    Abstract: Provided is a novel lithium silicate-based material useful as a positive electrode material for lithium ion secondary battery. The lithium silicate-based compound is represented by Li1.5FeSiO4.25 The lithium silicate-based compound is a compound including: lithium (Li); iron (Fe); silicon (Si); and oxygen (O), and expressed by a composition formula, Li1+2?FeSiO4+??c(?0.25???0.25, 0?c?0.5). The lithium silicate-based compound, of which iron (Fe) is trivalent, exerts a remarkable chemical stability as compared to Li2FeSiO4.
    Type: Application
    Filed: July 26, 2012
    Publication date: August 21, 2014
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Akira Kojima, Toshikatsu Kojima, Mitsuharu Tabuchi, Tetsuo Sakai, Masanori Morishita, Takuhiro Miyuki, Junichi Niwa, Masataka Nakanishi, Yuya Sato, Kazuhito Kawasumi, Masakazu Murase
  • Patent number: 8728663
    Abstract: To provide a sulfur-system positive electrode for lithium-ion battery, sulfur-system positive electrode which is good in the cyclability and the other characteristics, and a lithium-ion secondary battery including that positive electrode. In a positive electrode for lithium-ion secondary battery, the positive electrode having: a current collector; and an electrode layer that is formed on a surface of the current collector, and which includes a binder resin, an active material and a conductive additive, the positive electrode is characterized in that the active material includes a sulfur-modified polyacrylonitrile that is produced by heating a raw-material powder including a sulfur powder and a polyacrylonitrile powder in an enclosed nonoxidizing atmosphere; and the binder resin includes a polyimide resin and/or a polyamide-imide resin.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: May 20, 2014
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, National Institute of Advanced Industrial Science and Technology
    Inventors: Junichi Niwa, Kazuaki Hokano, Masataka Nakanishi, Akira Kojima, Kazuhito Kawasumi, Takuhiro Miyuki, Tetsuo Sakai
  • Publication number: 20140134485
    Abstract: A negative-electrode active material for secondary battery includes a sulfur-modified polyacrylonitrile. The sulfur-modified polyacrylonitrile includes a polyacrylonitrile, and sulfur being introduced into the polyacrylonitrile.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 15, 2014
    Applicants: National Institute of Advanced Industrial Science and Technology, Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Takuhiro MIYUKI, Toshikatsu KOJIMA, Yuta IKEUCHI, Masanori MORISHITA, Tetsuo SAKAI, Kazuhito KAWASUMI, Masataka NAKANISHI, Junichi NIWA
  • Publication number: 20140127585
    Abstract: It is intended to provide a positive electrode active material, which contains a lithium silicate based compound and has superior conductivity, for nonaqueous electrolyte secondary battery, a process for producing the same, and a nonaqueous electrolyte secondary battery using the positive electrode active material. The lithium silicate based compound and a carbon material are mixed at 450 to 16000 rpm for 1 minute to 10 hours and then heated and pressurized at 500° C. to 700° C. at 1 to 500 MPa for 1 minute to 15 hours, thereby adhering the lithium silicate based compound and the carbon material to each other.
    Type: Application
    Filed: March 16, 2012
    Publication date: May 8, 2014
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Akira Kojima, Toshikatsu Kojima, Tomonari Takeuchi, Tetsuo Sakai, Takuhiro Miyuki, Junichi Niwa, Kazuhito Kawasumi
  • Publication number: 20140050974
    Abstract: Because of being equipped with a positive electrode, a negative electrode and a sodium-ion nonaqueous electrolyte, and because the positive electrode includes a sulfur-based positive-electrode active material containing carbon (C) and sulfur (S), it is possible to inhibit sulfur from eluting out into electrolytic solution, thereby resulting in a sodium secondary battery that makes it feasible to undergo charging and discharging for 100 cycles or more reversibly.
    Type: Application
    Filed: January 12, 2012
    Publication date: February 20, 2014
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Takuhiro Miyuki, Toshikatsu Kojima, Yasue Okuyama, Tetsuo Sakai, Masataka Nakanishi, Junichi Niwa, Kazuhito Kawasumi, Satoshi Nakagawa, Akira Kojima
  • Publication number: 20140011089
    Abstract: The invention addresses the problem of providing a polyimide precursor, a polyimide precursor solution, and a mixture slurry, each capable of more firmly binding active material particles to a current collecting body. The polyimide precursor solution according to the invention contains a tetracarboxylic acid ester compound, a diamine compound having an anionic group, and a solvent. The solvent dissolves the tetracarboxylic acid ester compound and the diamine compound. As the tetracarboxylic acid ester compound, a 3,3?,4,4?-benzophenonetetracarboxylic acid diester is particularly preferred. Examples of the “diamine compound having an anionic group” include 3,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, and m-phenylenediamine-4-sulfonic acid. Further, the mixture slurry according to the invention contains active material particles in the polyimide precursor solution.
    Type: Application
    Filed: March 26, 2012
    Publication date: January 9, 2014
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, I.S.T. CORPORATION
    Inventors: Hiroshi Yamada, Kazuki Sawa, Yoshihito Nimura, Yuusuke Eda, Yasue Okuyama, Takuhiro Miyuki, Tetsuo Sakai
  • Publication number: 20130183584
    Abstract: A production process for lithium-silicate-based compound is characterized in that: a lithium-silicate compound is reacted with a transition-metal-element-containing substance including iron and/or manganese at from 300° C. or more to 600° C. or less within a molten salt including at least one member being selected from the group consisting of alkali-metal salts under a mixed-gas atmosphere including carbon dioxide and a reducing gas; wherein said transition-metal-element-containing substance includes a deposit that is formed by alkalifying a transition-metal-containing aqueous solution including a compound that includes iron and/or manganese. In accordance with the present production process, lithium-silicate-based compounds including silicon excessively are obtainable.
    Type: Application
    Filed: October 31, 2011
    Publication date: July 18, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Toshikatsu Kojima, Mitsuharu Tabuchi, Takuhiro Miyuki, Tetsuo Sakai, Akira Kojima, Junichi Niwa, Kazuhito Kawasumi
  • Publication number: 20130078519
    Abstract: A production process for lithium-silicate-based compound according to the present invention is characterized in that: a lithium-silicate compound being expressed by Li2SiO3 is reacted with a transition-metal-element-containing substance including at least one member being selected from the group consisting of iron and manganese at 550° C. or less within a molten salt including at least one member being selected from the group consisting of alkali-metal nitrates as well as alkali-metal hydroxides in an atmosphere in the presence of a mixed gas including carbon dioxide and a reducing gas. In accordance with the present invention, it is possible to produce lithium-silicate-based materials, which are useful as a positive-electrode active material for lithium-ion secondary battery, and the like, at low temperatures by means of relatively easy means.
    Type: Application
    Filed: June 17, 2011
    Publication date: March 28, 2013
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Toshikatsu Kojima, Takuhiro Miyuki, Tetsuo Sakai, Akira Kojima, Junichi Niwa, Hitotoshi Murase, Kazuhito Kawasumi
  • Publication number: 20130029222
    Abstract: To provide a sulfur-system positive electrode for lithium-ion battery, sulfur-system positive electrode which is good in the cyclability and the other characteristics, and a lithium-ion secondary battery including that positive electrode. In a positive electrode for lithium-ion secondary battery, the positive electrode having: a current collector; and an electrode layer that is formed on a surface of the current collector, and which includes a binder resin, an active material and a conductive additive, the positive electrode is characterized in that: the active material includes a sulfur-modified polyacrylonitrile that is produced by heating a raw-material powder including a sulfur powder and a polyacrylonitrile powder in an enclosed nonoxidizing atmosphere; and the binder resin includes a polyimide resin and/or a polyamide-imide resin.
    Type: Application
    Filed: April 12, 2011
    Publication date: January 31, 2013
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Junichi Niwa, Kazuaki Hokano, Masataka Nakanishi, Akira Kojima, Kazuhito Kawasumi, Takuhiro Miyuki, Tetsuo Sakai
  • Publication number: 20120027926
    Abstract: [PROBLEM] The purpose of the present invention is to provide a reference electrode which is easy to manufacture and handle, its manufacturing method, and an electrochemical cell using this. [METHOD FOR SOLVING THE PROBLEM] The reference electrode 10 comprises a core material 11 extending parallel to the anode 14 or the cathode 16 from a terminal, a lithium membrane 12 coating from a tip of the core material 11 to a field with predetermined length, and an insulator 13 partially coating a field uncoated with the lithium membrane 12 on the core material 11. The material consisting of at least a surface of the core material 11 is a conductive material which is substantially unresponsive to lithium or lithium alloy. The maximum width in a cross section of the core material 11 is preferably in the range of not less than 5 micrometers but not more than 50 micrometers, and thickness of the lithium membrane is preferably in the range of not less than 0.1 micrometers but not more than 20 micrometers.
    Type: Application
    Filed: July 28, 2011
    Publication date: February 2, 2012
    Applicants: Honjo Metal Co., Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Takuhiro Miyuki, Takashi Mukai, Tetsuo Sakai, Yukio Yamakawa, Yoshiyuki Honjo, Hironori Yamasaki
  • Publication number: 20110315919
    Abstract: A process is provided, process which makes it possible to produce lithium-borate-system materials by means of relatively simple means, lithium-borate-system materials which are useful as positive-electrode active materials for lithium-ion secondary battery, and the like, whose cyclic characteristics, capacities, and so forth, are improved, and which have better performance. The present production is characterized in that a divalent metallic compound including at least one member of compounds that is selected from the group consisting of divalent-iron compounds and divalent-manganese compounds, and boric acid as well as lithium hydroxide are reacted at 400-650° C. in a molten salt of a carbonate mixture comprising lithium carbonate and at least one member of alkali-metal carbonates that is selected from the group consisting of potassium carbonate, sodium carbonate, rubidium carbonate and cesium carbonate in a reducing atmosphere.
    Type: Application
    Filed: March 4, 2010
    Publication date: December 29, 2011
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Toshikatsu Kojima, Tetsuo Sakai, Takuhiro Miyuki, Akira Kojima, Junichi Niwa, Hitotoshi Murase
  • Publication number: 20110291055
    Abstract: The present invention is one which provides a production process for lithium-silicate-system compound, the production process being characterized in that: a lithium-silicate compound being expressed by Li2SiO3 is reacted with a substance including at least one member of transition-metal elements that is selected from the group consisting of iron and manganese at 400-650° C. in a molten salt of a carbonate mixture comprising lithium carbonate and at least one member of alkali-metal carbonates that is selected from the group consisting of potassium carbonate, sodium carbonate, rubidium carbonate and cesium carbonate in a mixed-gas atmosphere including carbon dioxide and a reducing gas; and a positive-electrode active material for lithium-ion secondary battery that comprises a lithium-silicate-system compound being obtained by the aforesaid process.
    Type: Application
    Filed: November 20, 2009
    Publication date: December 1, 2011
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Toshikatsu Kojima, Tetsuo Sakai, Takuhiro Miyuki, Yasue Okumura, Akira Kojima, Junichi Niwa, Hitotoshi Murase