Patents by Inventor Takuro Hirakimoto

Takuro Hirakimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230128747
    Abstract: A solid state battery that includes a solid state battery laminate including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer; and a member surrounding or in contact with the solid state battery, the member containing a moisture absorbing material.
    Type: Application
    Filed: December 21, 2022
    Publication date: April 27, 2023
    Inventors: Keisuke SHIMIZU, Takuro HIRAKIMOTO, Sumito SHIINA
  • Patent number: 8962216
    Abstract: An ion-conducting composite electrolyte membrane with strength improved without impairing ionic conductivity, and a fuel cell using the same are provided. The proton conductive composite electrolyte membrane includes an electrolyte which includes an ion-dissociating functional group and is made of a fullerene derivative or sulfonated pitch within a range of 5 wt % to 85 wt % both inclusive, and a binder which has a weight-average molecular weight of 550000 or over and a logarithmic viscosity of 2 dL/g or over, and is made of a fluorine-based polymer such as polyvinylidene fluoride and a copolymer of polyvinylidene fluoride and hexafluoropropylene within a range of 15 wt % to 95 wt % both inclusive.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: February 24, 2015
    Assignee: Sony Corporation
    Inventors: Takuro Hirakimoto, Kazuaki Fukushima, Kenji Kishimoto
  • Publication number: 20120129077
    Abstract: An ion-conducting composite electrolyte membrane with strength improved without impairing ionic conductivity, and a fuel cell using the same are provided. The proton conductive composite electrolyte membrane includes an electrolyte which includes an ion-dissociating functional group and is made of a fullerene derivative or sulfonated pitch within a range of 5 wt % to 85 wt % both inclusive, and a binder which has a weight-average molecular weight of 550000 or over and a logarithmic viscosity of 2 dL/g or over, and is made of a fluorine-based polymer such as polyvinylidene fluoride and a copolymer of polyvinylidene fluoride and hexafluoropropylene within a range of 15 wt % to 95 wt % both inclusive.
    Type: Application
    Filed: July 21, 2010
    Publication date: May 24, 2012
    Applicant: SONY CORPORATION
    Inventors: Takuro Hirakimoto, Kazuaki Fukushima, Kenji Kishimoto
  • Publication number: 20120115065
    Abstract: Provided are an ion-conductive composite electrolyte that improves ionic conductivity, a membrane-electrode assembly and an electrochemical device using the same, and a method for producing an ion-conductive composite electrolyte membrane. A proton-conductive composite electrolyte contains an electrolyte having a proton-dissociative group (—SO3H) and a compound having a Lewis acid group MXn-1, wherein the Lewis acid group and the proton-dissociative group interact with each other. The compound having the Lewis acid group is a Lewis acid compound MXn or a polymer having a Lewis acid group MXn-1. The electrolyte having a proton-dissociative group is, for example, a fullerene derivative. A proton-conductive composite electrolyte membrane is formed using a solvent having a donor number of 25 or less, and a membrane-electrode assembly using the same is suitable for use in a fuel cell.
    Type: Application
    Filed: July 16, 2010
    Publication date: May 10, 2012
    Applicant: SONY CORPORATION
    Inventors: Takuro Hirakimoto, Kazuaki Fukushima, Kenji Kishimoto
  • Publication number: 20120100458
    Abstract: There are provided an ion-conducting microparticle including an ion-dissociative group and exhibiting an affinity for a fluorine-containing resin, and a method of manufacturing the same, an ion-conducting composite including the ion-conducting microparticle, a membrane electrode assembly (MEA) including the ion-conducting composite as an electrolyte, and an electrochemical device such as a fuel cell.
    Type: Application
    Filed: July 7, 2010
    Publication date: April 26, 2012
    Applicant: SONY CORPORATION
    Inventors: Kenji Kishimoto, Kazuaki Fukushima, Takuro Hirakimoto
  • Publication number: 20120094209
    Abstract: Provided are an ion-conductive composite containing ion-conductive fine particles and a vinylidene fluoride homopolymer or copolymer and having excellent ion conductivity, a membrane electrode assembly (MEA) including the ion-conductive composite as an electrolyte, and an electrochemical device, such as a fuel cell. An ion-conductive composite is formed of ion-conductive fine particles having an ion-dissociative group and a vinylidene fluoride homopolymer or copolymer. Here, a vinylidene fluoride homopolymer or copolymer having a ?-type crystal structure is used. Since polyvinylidene fluoride having the ?-type crystal structure has a large dipole moment in a direction that is orthogonal to the direction of the molecular chain, permittivity in the vicinity of ion-conductive fine particles can be kept high, thus facilitating ionic conduction. As a result, the decrease in ion conductivity can be minimized when the composite is formed.
    Type: Application
    Filed: June 24, 2010
    Publication date: April 19, 2012
    Applicant: SONY CORPORATION
    Inventors: Kenji Kishimoto, Kazuaki Fukushima, Takuro Hirakimoto
  • Publication number: 20110223518
    Abstract: Provided are a proton-conductive composite electrolyte, a membrane-electrode assembly, and a fuel cell in which an improvement of the proton conductivity, and suppression of crossover and insolubilization are satisfied at the same time. The proton-conductive composite electrolyte includes an electrolyte having a proton-dissociative group (—SO3H) and a compound having a Lewis acid group MXn?1, wherein the Lewis acid group and the proton-dissociative group are interacted with each other. The compound having the Lewis acid group is a Lewis acid compound MXn or a polymer having a Lewis acid group MXn?1. The electrolyte having a proton-dissociative group is a fluorine-containing electrolyte, an electrolyte composed of a hydrocarbon-based resin, an inorganic resin, a hybrid resin of an organic resin and an inorganic resin, or the like, or a fullerene compound.
    Type: Application
    Filed: July 9, 2009
    Publication date: September 15, 2011
    Applicant: SONY CORPORATION
    Inventor: Takuro Hirakimoto
  • Patent number: 7842431
    Abstract: A mixture, cation conductor and electrochemical device using same are provided. The mixture and a cation conductor, in which cations can be moved without humidification even in a range of temperatures less than or equal to the boiling point of water, or an electrochemical device such as a fuel cell using them. A fuel electrode and an oxygen electrode, which are oppositely arranged with an electrolyte film in between, is provided. The electrolyte film contains a first compound formed of an imidazole derivative containing N having an unshared electron pair and a second compound of at least one selected from the group consisting of compounds having structures shown below.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: November 30, 2010
    Assignee: Sony Corporation
    Inventors: Kazuaki Fukushima, Takuro Hirakimoto, Shuichi Takizawa, Atsushi Nishimoto, Kazuhiro Noda
  • Publication number: 20070111073
    Abstract: A mixture, cation conductor and electrochemical device using same are provided. The mixture and a cation conductor, in which cations can be moved without humidification even in a range of temperatures less than or equal to the boiling point of water, or an electrochemical device such as a fuel cell using them. A fuel electrode and an oxygen electrode, which are oppositely arranged with an electrolyte film in between, is provided. The electrolyte film contains a first compound formed of an imidazole derivative containing N having an unshared electron pair and a second compound of at least one selected from the group consisting of compounds having structures shown below.
    Type: Application
    Filed: February 2, 2005
    Publication date: May 17, 2007
    Applicant: Sony Corporation
    Inventors: Kazuaki Fukushima, Takuro Hirakimoto, Shuichi Takizawa, Atsushi Nishimoto, Kazuhiro Noda
  • Publication number: 20060263661
    Abstract: A proton conductor is provided. The proton conductor includes a zwitterion salt such as MeImPrSO3 and a proton (H+) donor such as HTFSI. An electrochemical device having a stacked layer structure formed of a first electrode, a second electrode and a proton conducting layer held between these electrodes, wherein the proton conducting layer includes a proton conductor according to the present invention. The present invention can, therefore, provide a proton conductor and electrochemical device, which can be suitably used in a dry state or under high-temperature, non-humidified conditions, can obviate a complex accessory such as a humidifier, and can simplify the system.
    Type: Application
    Filed: June 26, 2006
    Publication date: November 23, 2006
    Applicant: SONY CORPORATION
    Inventors: Shuichi Takizawa, Atsushi Nishimoto, Kazuaki Fukushima, Takuro Hirakimoto, Kazuhiro Noda
  • Publication number: 20060204813
    Abstract: An ionic conductor insoluble to water and fuel, and capable of stably allowing ions such as protons to conduct therethrough, a method of manufacturing the same, and an electrochemical device. The ionic conductor having a derivative in which an ion-dissociative group is bound to a carbonaceous substance composed of at least one species selected from the group consisting of fullerene molecule, cluster mainly composed of carbon, and structure of linear or tubular carbon; and a polymer of a substance having a basic group. A method of manufacturing an ionic conductor having a step of dissolving the above-described derivative; and a polymer of the substance having the basic group; into a solvent to thereby prepare a homogeneous solution; and a step of removing the solvent. An electrochemical device having a negative electrode, a positive electrode, and an ionic conductor held therebetween, wherein the ionic conductor is composed of the ionic conductor of the present invention described in the above.
    Type: Application
    Filed: July 28, 2004
    Publication date: September 14, 2006
    Inventors: Takuro Hirakimoto, Yong Li, Kazuaki Fukushima