Patents by Inventor Takuya Hirata

Takuya Hirata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9901873
    Abstract: CO2 absorber includes a CO2 absorbing section in which a CO2-containing flue gas and a CO2 absorbent are brought into contact with each other to remove CO2, and an aqueous cleaning section in which a decarbonated flue gas and rinsing water are brought into contact with each other to remove an accompanying substance. A lean solution is re-used in the absorber. The CO2 recovery device includes a degassing basin which is interposed in a rich solution supply line that supplies the rich solution from the CO2 absorber to the absorbent regenerator, and which includes a retaining section configured to remove oxygen in the rich solution.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: February 27, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Takashi Kamijo, Daisuke Shimada
  • Patent number: 9901875
    Abstract: Provided are a reclaimer that introduces a part of an absorbent that has absorbed CO2 or H2S in a flue gas through an introduction line and stores the absorbent, a heating section that heats the absorbent stored in the reclaimer to obtain recovered vapor, and a mixing tank disposed on the introduction line through which the absorbent is introduced into the reclaimer, and which introduces an absorbent (lean solution) and an alkaline agent for mixing thereof.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: February 27, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Shinsuke Nakatani
  • Publication number: 20170341014
    Abstract: A wet desulfurization apparatus which removes sulfur oxides in flue gas from a boiler 11 includes a mist collection/agglomeration apparatus which is provided on a downstream side of the desulfurization apparatus and forms agglomerated SO3 mist by causing particles of SO3 mist contained in flue gas 12B from the wet desulfurization apparatus to be bonded together and have bloated particle sizes; a CO2 recovery apparatus constituted by a CO2 absorption tower having a CO2 absorption unit which removes CO2 contained in flue gas by being brought into contact with a CO2 absorbent and an absorbent regeneration tower which recovers CO2 by releasing CO2 from the CO2 absorbent having absorbed CO2 and regenerates the CO2 absorbent; and a mist collection unit which collects CO2 absorbent bloated mist bloated by the CO2 absorbent being absorbed by the agglomerated SO3 mist in the CO2 absorption unit.
    Type: Application
    Filed: September 24, 2015
    Publication date: November 30, 2017
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., MITSUBISHI HITACHI POWER SYSTEMS ENVIRONMENTAL SOLUTIONS, LTD.
    Inventors: Takuya Hirata, Hiromitsu Nagayasu, Yasutoshi Ueda, Tomoki Noborisato, Takao Tanaka, Masaya Kato
  • Publication number: 20170326495
    Abstract: An absorbing liquid which absorbs the CO2 or H2S or both contained in a gas, and which comprises 1) at least one tertiary-monoamine main agent selected from a tertiary-monoamine group and 2) at least one secondary-diamine first additive selected from a secondary-diamine group, the secondary-diamine concentration being within the range of 0.05 to 0.5 in terms of the additive concentration index represented by the following expression (I). (Additive concentration index)=[(secondary-diamine acid dissociation index) (pKa)/(tertiary-monoamine acid dissociation index) (pKa)](index ratio)×[(secondary-diamine molar concentration) (mol/L)/(tertiary-monoamine molar concentration) (mol/L)](molar ratio)??(I).
    Type: Application
    Filed: October 23, 2015
    Publication date: November 16, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Takahiko Endo, Tatsuya Tsujiuchi
  • Publication number: 20170320009
    Abstract: A source gas introduction line for introducing source gas containing CO2, a first membrane separator for membrane-separating CO2 from source gas, a first permeable gas discharge line for discharging first permeable gas permeated by membrane separation of the first membrane separator, a first non-permeable gas discharge line for discharging first non-permeable gas not permeated by membrane separation of the first membrane separator, a second membrane separator provided at a downstream side of the first membrane separator and for further membrane-separating CO2 from the first non-permeable gas, a second permeable gas discharge line for discharging second permeable gas permeated by membrane separation of the second membrane separator, a second permeable gas return line branched from a part of the second permeable gas discharge line and for returning the second permeable gas to a source gas side, and a CO2 concentration meter are included.
    Type: Application
    Filed: October 21, 2015
    Publication date: November 9, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takuya Hirata, Kouji Horizoe
  • Patent number: 9789437
    Abstract: A CO2 recovery device is provided with a CO2 absorption tower and an absorption-solution regeneration tower. The CO2 absorption tower includes: a CO2 absorption section in which CO2-containing flue gas is brought into contact with a CO2 absorption solution, namely a basic-amine-compound absorption solution, so as to remove CO2 from the CO2-containing flue gas; and a water-washing section in which decarbonated flue gas from which CO2 has been removed is brought into contact with washing water so as to remove accompanying substances accompanying the decarbonated flue gas. The absorption-solution regeneration tower regenerates the CO2 absorption solution that has absorbed CO2. This CO2 recovery device, in which a lean solution from which CO2 has been removed is reused in the CO2 absorption tower, has an aldehyde-removing agent supply unit that supplies a sulfite-compound aldehyde removing agent to a circulating washing-water line that circulates the washing water to the water-washing section.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: October 17, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Tsuyoshi Oishi, Takashi Kamijo
  • Publication number: 20170291138
    Abstract: An absorption column is equipped with: a CO2 absorption section absorbing CO2 from CO2-containing exhaust gas using a lean solution; a main rinse section recovering an entrained CO2 absorbent using rinse water; a rinse water circulation line circulating a rinse water containing the CO2 absorbent recovered in a liquid storage section of the main rinse section; a pre-rinse section provided between the CO2 absorption section and the main rinse section; a rinse section extraction liquid supply line extracting a portion of the rinse water containing the CO2 absorbent from the rinse water circulation line, and introducing the same into a reflux section of an absorption liquid regeneration tower; and a refluxed water supply line extracting a portion of refluxed water, introducing the same as pre-rinse water for the pre-rinse section, and connected on the pre-rinse section side.
    Type: Application
    Filed: October 23, 2015
    Publication date: October 12, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Takahiko Endo, Tatsuya Tsujiuchi
  • Publication number: 20170273979
    Abstract: The problem to be solved by the present invention is to provide a novel pharmaceutical composition for prevention and/or treatment of urinary incontinence, which differs from conventional drugs. The present invention provides a therapeutic agent for prevention and/or treatment of urinary incontinence having 1-[2-({[trans-3-fluoro-1-(3-fluoropyridin-2-yl)cyclobutyl]methyl}amino)pyrimidin-5-yl]-1H-pyrrole-3-carboxamide or a salt thereof, as an active ingredient.
    Type: Application
    Filed: September 9, 2015
    Publication date: September 28, 2017
    Applicants: Astellas Pharma Inc., Cytokinetics Incorporated
    Inventors: Shinobu MORI, Yusuke KAJIHARA, Hiroko INAMURA, Takuya HIRATA
  • Patent number: 9662607
    Abstract: A CO2 recovery unit includes an absorber that reduces CO2 in flue gas (101) discharged from a combustion facility (50) by absorbing CO2 by an absorbent, a regenerator that heats the absorbent having absorbed CO2 to emit CO2, and regenerates and supplies the absorbent to the absorber, and a regenerating heater that uses steam (106) supplied from the combustion facility (50) for heating the absorbent in the regenerator and returns heated condensed water (106a) to the combustion facility (50). The CO2 recovery unit further includes a condensed water/flue gas heat exchanger (57) that heats the condensed water (106a) to be returned from the regenerating heater to the combustion facility (50) by heat-exchanging the condensed water (106a) with the flue gas (101) in a flue gas duct (51) in the combustion facility (50).
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: May 30, 2017
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Tatsuya Tsujiuchi, Hiromitsu Nagayasu, Takuya Hirata, Keiji Fujikawa, Tetsuya Imai, Hiroshi Tanaka, Tsuyoshi Oishi, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara
  • Publication number: 20170106332
    Abstract: A CO2 recovery apparatus is provided with: a CO2 absorption tower for bringing exhaust gas into contact with a CO2 absorbing liquid and making the CO2 absorbing liquid absorb the CO2 contained in the exhaust gas; a CO2 absorbing liquid regeneration tower for heating the CO2 absorbing liquid with steam and releasing CO2 from the CO2 absorbing liquid and regenerating the CO2 absorbing liquid; a flowmeter for determining the flow rates of the exhaust gas introduced into the CO2 absorption tower; and a control unit for classifying the flow rates of the exhaust gas into multiple flow rate ranges, and controlling the flow rate of the CO2 absorbing liquid supplied to the CO2 absorption tower and the flow rate of steam supplied to the CO2 absorbing liquid regeneration tower on the basis of prescribed set load values which have been previously established in accordance with the multiple flow rate ranges.
    Type: Application
    Filed: January 9, 2015
    Publication date: April 20, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takuya Hirata, Hiroshi Tanaka, Hiromitsu Nagayasu, Yoshiki Sorimachi, Daisuke Shimada, Tsuyoshi Oishi
  • Patent number: 9623365
    Abstract: An absorbent regenerator includes: a rich solution supply line; a lean solution supply line; a lean-rich solution heat exchanger that is provided at an intersection of the lean solution supply line and the rich solution supply line; a branch portion that branches some of the rich solution at a downstream side of the lean-rich solution heat exchanger on the rich solution supply line; and a first mixing portion that mixes the some of the rich solution branched at the branch portion with a semi-lean solution, wherein a front end of a branch line through which the some of the branched rich solution is supplied is connected to a solution storage portion of the semi-lean solution which is located at an upper stage side of the absorbent regenerator divided into parts, and the some of the branched rich solution is mixed with the semi-lean solution.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: April 18, 2017
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Hiroshi Tanaka, Takuya Hirata, Tsuyoshi Oishi, Takahiko Endo, Hiroaki Ito
  • Publication number: 20170073016
    Abstract: The configuration of a vehicle side structure according to the present invention is characterized by including an upper pillar reinforcing member that forms an upper edge of a front door opening of a vehicle, a pillar hinge reinforcing member that forms a front edge of the front door opening, and a side sill strengthening member that forms a lower edge of the front door opening, wherein the pillar hinge reinforcing member has a hinge bulged portion that is bulged toward the vehicle exterior, along a vertical direction, the hinge bulged portion has at least one ridge line that is curved so as to protrude toward the vehicle front side, and the at least one ridge line links a joining point between the pillar hinge reinforcing member and the upper pillar reinforcing member and a joining point between the pillar hinge reinforcing member and the side sill strengthening member.
    Type: Application
    Filed: May 29, 2015
    Publication date: March 16, 2017
    Inventor: Takuya HIRATA
  • Patent number: 9568193
    Abstract: An air pollution control system includes: a desulfurization device which removes sulfur oxides in a flue gas generated from a boiler; a cooler which is provided at the downstream side of the desulfurization device, decreases a flue gas temperature and enlarges a particle diameter of SO3 mist contained in the flue gas through cooling or heating the flue gas by a temperature adjustment means for adjusting a gas dew point temperature of the flue gas; and a CO2 recovery device which includes a CO2 absorber bringing CO2 in the flue gas into contact with the CO2 absorbent so as to remove CO2 therefrom and a regenerator recovering CO2 by dissociating CO2 from the CO2 absorbent and regenerating the CO2 absorbent, wherein the flue gas is cooled by a cooling unit so as to enlarge the SO3 mist in the flue gas.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: February 14, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tsuyoshi Oishi, Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Yoshinori Kajiya, Tomoki Noborisato
  • Publication number: 20160361682
    Abstract: A CO2 recovery unit and a CO2 recovery method capable of having an excellent CO2 absorption rate and saving energy are provided. A CO2 recovery unit of the invention includes: a CO2 absorber which includes an upper CO2 absorption unit obtaining a CO2 absorbent by causing a flue gas containing CO2 to contact a CO2 absorbent and a lower CO2 absorption unit obtaining a CO2 absorbent by causing the CO2 absorbent to contact a flue gas containing CO2; a CO2 absorbent regenerator which obtains the CO2 absorbent by heating the CO2 absorbent a thermometer which measures a temperature of the CO2 absorbent supplied from the CO2 absorber to the CO2 absorbent regenerator; and a control device which controls a temperature of the CO2 absorbent supplied to the lower CO2 absorption unit based on the temperature of the CO2 absorbent measured by the thermometer.
    Type: Application
    Filed: October 7, 2014
    Publication date: December 15, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Atsuhiro Yukumoto, Takuya Hirata, Hiroshi Tanaka, Akiyori Hagimoto, Haruaki Hirayama, Tsuyoshi Oishi
  • Publication number: 20160310894
    Abstract: A gas-liquid contactor includes: a plurality of packing material sections through which exhaust gas passes; and a plurality of liquid distributors provided upon each of the plurality of packing material sections, dispersing a CO2 absorption liquid caused to come in contact with the exhaust gas, and supplying the CO2 absorption liquid to tile plurality of packing material sections. The plurality of packing material sections include a first packing material layer and a second packing material layer that have provided therein flow paths (111a, 112a) for the CO2 absorption fluid that each extend in prescribed directions (D2, D3). The first packing material layer and the second packing material layer are characterized by being laminated such that the directions (D2, D3) of extension of the flow paths (111a, 112a) in the flow direction (D1) for the exhaust gas are different from each other.
    Type: Application
    Filed: January 13, 2015
    Publication date: October 27, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Yoshinori Kajiya
  • Publication number: 20160288049
    Abstract: Provided are a reclaimer that introduces a part of an absorbent that has absorbed CO2 or H2S in a flue gas through an introduction line and stores the absorbent, a heating section that heats the absorbent stored in the reclaimer to obtain recovered vapor, and a mixing tank disposed on the introduction line through which the absorbent is introduced into the reclaimer, and which introduces an absorbent (lean solution) and an alkaline agent for mixing thereof.
    Type: Application
    Filed: October 14, 2014
    Publication date: October 6, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Shinsuke Nakatani
  • Publication number: 20160271557
    Abstract: A CO2 recovery unit includes an absorber that reduces CO2 in flue gas (101) discharged from a combustion facility (50) by absorbing CO2 by an absorbent, a regenerator that heats the absorbent having absorbed CO2 to emit CO2, and regenerates and supplies the absorbent to the absorber, and a regenerating heater that uses steam (106) supplied from the combustion facility (50) for heating the absorbent in the regenerator and returns heated condensed water (106a) to the combustion facility (50). The CO2 recovery unit further includes a condensed water/flue gas heat exchanger (57) that heats the condensed water (106a) to be returned from the regenerating heater to the combustion facility (50) by heat-exchanging the condensed water (106a) with the flue gas (101) in a flue gas duct (51) in the combustion facility (50).
    Type: Application
    Filed: June 1, 2016
    Publication date: September 22, 2016
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Tatsuya Tsujiuchi, Hiromitsu Nagayasu, Takuya Hirata, Keiji Fujikawa, Tetsuya Imai, Hiroshi Tanaka, Tsuyoshi Oishi, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara
  • Publication number: 20160256825
    Abstract: Provided are a reclaimer 51 that introduces, through a branch line L11, and stores a part 17a of an absorbent 17 regenerated in a regenerator of a recovery unit that recovers CO2 or H2S in a gas, a first alkaline agent supply section 53A that, supplies an alkaline agent 52 to the reclaimer 51, a heating section 54 that heats the absorbent 17 stored in the reclaimer 51 and to which the alkaline agent 52 has been mixed to obtain recovered vapor 61, a first vapor cooler 55A that cools the recovered vapor 61 discharged from the reclaimer 51 through a vapor line L12, a first gas-liquid separator 56A that separates a coexisting substance 62 entrained in the cooled recovered vapor 61 into a recovered absorption agent vapor (gas) 17b and the liquid coexisting substance 62 by gas-liquid separation, and an introduction line L13 that introduces the recovered absorption agent vapor 17b separated in the first gas-liquid separator 56A into a regenerator 20.
    Type: Application
    Filed: October 22, 2014
    Publication date: September 8, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Atsuhiro Yukumoto, Tsuyoshi Oishi, Shinsuke Nakatani
  • Publication number: 20160256816
    Abstract: An absorbent regenerator includes: a rich solution supply line; a lean solution supply line; a lean-rich solution heat exchanger that is provided at an intersection of the lean solution supply line and the rich solution supply line; a branch portion that branches some of the rich solution at a downstream side of the lean-rich solution heat exchanger on the rich solution supply line; and a first mixing portion that mixes the some of the rich solution branched at the branch portion with a semi-lean solution, wherein a front end of a branch line through which the some of the branched rich solution is supplied is connected to a solution storage portion of the semi-lean solution which is located at an upper stage side of the absorbent regenerator divided into parts, and the some of the branched rich solution is mixed with the semi-lean solution.
    Type: Application
    Filed: October 10, 2014
    Publication date: September 8, 2016
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Hiroshi Tanaka, Takuya Hirata, Tsuyoshi Oishi, Takahiko Endo, Hiroaki Ito
  • Patent number: 9421491
    Abstract: The CO2 recovery apparatus is provided with a CO2 absorption portion for absorbing CO2 in a CO2-containing exhaust gas by a CO2 absorbing liquid, a water washing portion provided on the upper portion side of the CO2 absorption portion so as to cool a CO2-removed exhaust gas and also recover the accompanying CO2 absorbing liquid, a washing liquid circulation line for directly circulating a washing liquid containing the CO2 absorbing liquid recovered in the water washing portion, an extraction line for extracting part of the washing liquid containing the CO2 absorbing liquid as an extracted liquid from the washing liquid circulation line, a concentration portion for separating a gas component (water vapor) from the extracted liquid while concentrating the CO2 absorbing liquid, and a concentrated liquid feed line for feeding a concentrated liquid concentrated in the concentration portion to the side of an absorbing liquid regeneration tower.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: August 23, 2016
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Tatsuya Tsujiuchi, Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Tsuyoshi Oishi, Takashi Kamijo, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara