Patents by Inventor Takuya Yoshihara

Takuya Yoshihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7564102
    Abstract: A method for manufacturing a semiconductor device wherein both the threshold voltages of an N-type MISFET and a P-type MISFET are low, device can be easily manufactured at a lower cost and a higher product yield, and the reliability of the gate insulation film is higher. The gate insulation film is formed on the surface of a silicon substrate 1 in N-type MISFET forming region and the P-type MISFET forming region, and metal gates 4 and 5 are provided thereon. The metal gate 4 is made from a TiCoN film, and the work function thereof is set at 4.0 to 4.8 eV suited to the gate electrode material of the N-type MISFET. The metal gate 5 is formed from a portion of the TiCoN film by ion-implantation of oxygen into the TiCoN film configuring the gate electrode 4 at a dosage of 1013 to 1014 (ions/cm2) to raise the work function by around 0.2 to 0.8 eV.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: July 21, 2009
    Assignee: Seiko Epson Corporation
    Inventor: Takuya Yoshihara
  • Publication number: 20050110098
    Abstract: A method for manufacturing a semiconductor device wherein both the threshold voltages of an N-type MISFET and a P-type MISFET are low, device can be easily manufactured at a lower cost and a higher product yield, and the reliability of the gate insulation film is higher. The gate insulation film is formed on the surface of a silicon substrate 1 in N-type MISFET forming region and the P-type MISFET forming region, and metal gates 4 and 5 are provided thereon. The metal gate 4 is made from a TiCoN film, and the work function thereof is set at 4.0 to 4.8 eV suited to the gate electrode material of the N-type MISFET. The metal gate 5 is formed from a portion of the TiCoN film by ion-implantation of oxygen into the TiCoN film configuring the gate electrode 4 at a dosage of 1013 to 1014 (ions/cm2) to raise the work function by around 0.2 to 0.8 eV.
    Type: Application
    Filed: March 7, 2003
    Publication date: May 26, 2005
    Inventor: Takuya Yoshihara
  • Patent number: 6455204
    Abstract: An X-ray mask including (a) an X-ray permeable membrane and (b) an X-ray absorber formed in a pattern on the X-ray permeable membrane. The X-ray absorber is composed of an alloy having one of the following groups: (a) tantalum (Ta), ruthenium (Ru), and germanium (Ge); (b) tantalum (Ta), ruthenium (Ru), and silicon (Si); (c) rhenium (Re) and germanium (Ge); and (d) tungsten (W) and germanium (Ge). The X-ray mask provides advantageous features, such as having high ability for absorbing X-ray therein, possible reproduction of a thin film having low stress and having a densified crystal structure.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: September 24, 2002
    Assignee: NEC Corporation
    Inventor: Takuya Yoshihara
  • Patent number: 6197457
    Abstract: An X-ray mask including (a) an X-ray permeable membrane and (b) an X-ray absorber formed in a pattern on the X-ray permeable membrane. The X-ray absorber is composed of an alloy having one of the following groups: (a) tantalum (Ta), ruthenium (Ru), and germanium (Ge); (b) tantalum (Ta), ruthenium (Ru), and silicon (Si); (c) rhenium (Re) and germanium (Ge); and (d) tungsten (W) and germanium (Ge). The X-ray mask provides advantageous features, such as having high ability for absorbing X-ray therein, possible reproduction of a thin film having low stress and having a densified crystal structure.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: March 6, 2001
    Assignee: NEC Corporation
    Inventor: Takuya Yoshihara
  • Patent number: 6066418
    Abstract: On a support frame of Si, an X-ray transmissive layer of SiC or so forth is formed. On the X-ray transmissive film, a predetermined pattern of X-ray absorber of an oxide, such as TaO or so forth is formed.
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: May 23, 2000
    Assignee: NEC Corporation
    Inventor: Takuya Yoshihara
  • Patent number: 5754619
    Abstract: In an X-ray mask for X-ray lithography, a Ta--Ge alloy is employed as the X-ray absorber to form a mask pattern on a membrane, which transmits X-rays, such as a SiC membrane. Ta--Ge is sufficiently high in absorption coefficient. The mask pattern is formed by depositing a Ta--Ge film on the membrane by sputtering and patterning the deposited film. Since the sputter-deposited Ta--Ge film is amorphous, sidewalls of the mask pattern become smooth even when the pattern is finer than 0.1 .mu.m. The Ta--Ge film is high in chemical stability, and this film is relatively small in the dependence of internal stress on the pressure of the sputtering gas so that the stress can easily be controlled.
    Type: Grant
    Filed: December 27, 1996
    Date of Patent: May 19, 1998
    Assignee: NEC Corporation
    Inventors: Takuya Yoshihara, Setsu Kotsuji
  • Patent number: 5635081
    Abstract: In a fabrication method of a field-emission cold cathode, a conductive material for an emitter is first deposited on a Si substrate and then dry etched to form a conical emitter. An insulating layer and a gate electrode are deposited in such a manner as to cover over the emitters, and the surfaces of the emitters are flattened with a resist. Then, the insulating layer and the gate electrode are opened by etching back to expose the end of the conical emitter. Ta can be used as the conductive material to be deposited on the Si substrate. Meanwhile, the insulating layer to be deposited on the emitter can be formed by anodic oxidation. Further, where the height of the surface of the gate electrode from the surface of the Si substrate is set equal to the height of the emitter, detection of the end point at the later etching back step is facilitated.
    Type: Grant
    Filed: July 11, 1995
    Date of Patent: June 3, 1997
    Assignee: NEC Corporation
    Inventor: Takuya Yoshihara