Patents by Inventor Tan Juan Boon

Tan Juan Boon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150187714
    Abstract: Integrated circuits including copper pillar structures and methods for fabricating the same are disclosed. In one exemplary embodiment, an integrated circuit includes a last metal layer and a passivation layer disposed over the last metal layer, both the last metal and passivation layers being disposed over an integrated circuit active device on a semiconductor substrate. The integrated circuit further includes a copper pillar structure disposed partially within a first portion of the passivation layer and immediately over the last metal layer. The first portion of the passivation layer is defined by first and second sidewalls of the passivation layer and an upper surface of the last metal layer. The copper pillar structure includes a liner formed along the first and second sidewalls and over the upper surface of the last metal and a copper material within the liner.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 2, 2015
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Mahesh Anant Bhatkar, Tan Juan Boon, Liu Wei, Oswald Jens
  • Patent number: 7276797
    Abstract: A structure and method for an improved a bond pad structure. A top wiring layer and a top dielectric (IMD) layer over a semiconductor structure are provided. The buffer dielectric layer is formed over the top wiring layer and the top dielectric (IMD) layer. A buffer opening is formed in the buffer dielectric layer exposing at least of portion of the top wiring layer. A barrier layer is formed over the buffer dielectric layer, and the top wiring layer in the buffer opening. A conductive buffer layer is formed over the barrier layer. The conductive buffer layer is planarized to form a buffer pad in the buffer opening. A passivation layer is formed over the buffer pad and the buffer dielectric layer. A bond pad opening is formed in the passivation layer over at least a portion of the buffer pad. A bond pad support layer is formed over the buffer pad and the buffer dielectric layer. A bond pad layer is formed over the bond pad support layer.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: October 2, 2007
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Zhang Fan, Zhang Bei Chao, Liu Wuping, Chok Kho Liep, Hsia Liang Choo, Lim Yeow Kheng, Alan Cuthbertson, Tan Juan Boon
  • Patent number: 7148157
    Abstract: A method of forming phoslon (PNO) comprising the following steps. A CVD reaction chamber having a reaction temperature of from about 300 to 600° C. is provided. From about 10 to 200 sccm PH3 gas, from about 50 to 4000 sccm N2 gas and from about 50 to 1000 sccm NH3 gas are introduced into the CVD reaction chamber. Either from about 10 to 200 sccm O2 gas or from about 50 to 1000 sccm N2O gas is introduced into the CVD reaction chamber. An HFRF power of from about 0 watts to 4 kilowatts is also employed. An LFRF power of from about 0 to 5000 watts may also be employed. Employing a phoslon etch stop layer in a borderless contact fabrication. Employing a phoslon lower etch stop layer and/or a phoslon middle etch stop layer in a dual damascene fabrication.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: December 12, 2006
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Hsia Liang Choo, John Sudijono, Liu Huang, Tan Juan Boon
  • Patent number: 6998335
    Abstract: A structure and method for an improved a bond pad structure. We provide a top wiring layer and a top dielectric (IMD) layer over a semiconductor structure. The buffer dielectric layer is formed over the top wiring layer and the top dielectric (IMD) layer. We form a buffer opening in the buffer dielectric layer exposing at least of portion of the top wiring layer. We form a barrier layer over the buffer dielectric layer, and the top wiring layer in the buffer opening. A conductive buffer layer is formed over the barrier layer. We planarize the conductive buffer layer to form a buffer pad in the buffer opening. We form a passivation layer over the buffer pad and the buffer dielectric layer. We form a bond pad opening in the passivation layer over at least a portion of the buffer pad. We form a bond pad support layer over the buffer pad and the buffer dielectric layer. We form a bond pad layer over the a bond pad support layer.
    Type: Grant
    Filed: December 13, 2003
    Date of Patent: February 14, 2006
    Assignee: Chartered Semiconductor Manufacturing, LTD
    Inventors: Zhang Fan, Zhang Bei Chao, Liu Wuping, Chok Kho Liep, Hsia Liang Choo, Lim Yeow Kheng, Alan Cuthbertson, Tan Juan Boon
  • Publication number: 20040077181
    Abstract: A method of forming phoslon (PNO) comprising the following steps. A CVD reaction chamber having a reaction temperature of from about 300 to 600° C. is provided. From about 10 to 200 sccm PH3 gas, from about 50 to 4000 sccm N2 gas and from about 50 to 1000 sccm NH3 gas are introduced into the CVD reaction chamber. Either from about 10 to 200 sccm O2 gas or from about 50 to 1000 sccm N2O gas is introduced into the CVD reaction chamber. An HFRF power of from about 0 watts to 4 kilowatts is also employed. An LFRF power of from about 0 to 5000 watts may also be employed. Employing a phoslon etch stop layer in a borderless contact fabrication. Employing a phoslon lower etch stop layer and/or a phoslon middle etch stop layer in a dual damascene fabrication.
    Type: Application
    Filed: October 22, 2002
    Publication date: April 22, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Hsia Liang Choo, John Sudijono, Liu Huang, Tan Juan Boon