Patents by Inventor Tanmay Lele

Tanmay Lele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9316637
    Abstract: Embodiments of the invention include sensors comprising high electron mobility transistors (HEMTs) with capture reagents on a gate region of the HEMTs. Example sensors include HEMTs with a thin gold layer on the gate region and bound antibodies; a thin gold layer on the gate region and chelating agents; a non-native gate dielectric on the gate region; and nanorods of a non-native dielectric with an immobilized enzyme on the gate region. Embodiments including antibodies or enzymes can have the antibodies or enzymes bound to the Au-gate via a binding group. Other embodiments of the invention are methods of using the sensors for detecting breast cancer, prostate cancer, kidney injury, glucose, metals or pH where a signal is generated by the HEMT when a solution is contacted with the sensor. The solution can be blood, saliva, urine, breath condensate, or any solution suspected of containing any specific analyte for the sensor.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: April 19, 2016
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Fan Ren, Stephen John Pearton, Tanmay Lele, Hung-Ta Wang, Byoung-Sam Kang
  • Patent number: 8835984
    Abstract: Embodiments of the invention include sensors comprising AlGaAs/GaAs high electron mobility transistors (HEMTs), inGaP/GaAs HEMTs. InAlAs/InGaAs HEMTs, AlGaAs/InGaAs PHEMTs, InAlAs/InGaAs PHEMTs, Sb based HEMTs, or InAs based HEMTs, the HEMTs having functionalization at a gate surface with target receptors. The target receptors allow sensitivity to targets (or substrates) for detecting breast cancer, prostate cancer, kidney injury, chloride, glucose, metals or pEI where a signal is generated by the HEMI when a solution is contacted with the sensor. The solution can be blood, saliva, urine, breath condensate, or any solution suspected of containing any specific analyte for the sensor.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: September 16, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Fan Ren, Stephen John Pearton, Tanmay Lele, Hung-Ta Wang, Byoung-Sam Kang
  • Patent number: 8828713
    Abstract: Embodiments of the invention include sensors comprising high electron mobility transistors (HEMTs) with capture reagents on a gate region of the HEMTs. Example sensors include HEMTs with a thin gold layer on the gate region and bound antibodies; a thin gold layer on the gate region and chelating agents; a non-native gate dielectric on the gate region; and nanorods of a non-native dielectric with an immobilized enzyme on the gate region. Embodiments including antibodies or enzymes can have the antibodies or enzymes bound to the Au-gate via a binding group. Other embodiments of the invention are methods of using the sensors for detecting breast cancer, prostate cancer, kidney injury, glucose, metals or pH where a signal is generated by the HEMT when a solution is contacted with the sensor. The solution can be blood, saliva, urine, breath condensate, or any solution suspected of containing any specific analyte for the sensor.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: September 9, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Fan Ren, Stephen John Pearton, Tanmay Lele
  • Publication number: 20140120630
    Abstract: Embodiments of the invention include sensors comprising high electron mobility transistors (HEMTs) with capture reagents on a gate region of the HEMTs. Example sensors include HEMTs with a thin gold layer on the gate region and bound antibodies; a thin gold layer on the gate region and chelating agents; a non-native gate dielectric on the gate region; and nanorods of a non-native dielectric with an immobilized enzyme on the gate region. Embodiments including antibodies or enzymes can have the antibodies or enzymes bound to the Au-gate via a binding group. Other embodiments of the invention are methods of using the sensors for detecting breast cancer, prostate cancer, kidney injury, glucose, metals or pH where a signal is generated by the HEMT when a solution is contacted with the sensor. The solution can be blood, saliva, urine, breath condensate, or any solution suspected of containing any specific analyte for the sensor.
    Type: Application
    Filed: December 6, 2013
    Publication date: May 1, 2014
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPORATED
    Inventors: FAN REN, STEPHEN JOHN PEARTON, TANMAY LELE, HUNG-TA WANG, BYOUNG-SAM KANG
  • Publication number: 20110117669
    Abstract: Embodiments of the present invention provide binding molecule-functionalized high electron mobility transistors (HEMTs) that can be used to detect toxins, pathogens and other biological materials. In a specific embodiment, an antibody-functionalized HEMT can be used to detect botulinum toxin. The antibody can be anchored to a gold-layered gate area of the HEMT through immobilized thioglycolic acid. Embodiments of the subject detectors can be used in field-deployable electronic biological applications based on AlGaN/GaN HEMTs.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 19, 2011
    Inventors: Fan Ren, Stephen John Pearton, Tanmay Lele
  • Publication number: 20110074381
    Abstract: Embodiments of the invention include sensors comprising high electron mobility transistors (HEMTs) with capture reagents on a gate region of the HEMTs. Example sensors include HEMTs with a thin gold layer on the gate region and bound antibodies; a thin gold layer on the gate region and chelating agents; a non-native gate dielectric on the gate region; and nanorods of a non-native dielectric with an immobilized enzyme on the gate region. Embodiments including antibodies or enzymes can have the antibodies or enzymes bound to the Au-gate via a binding group. Other embodiments of the invention are methods of using the sensors for detecting breast cancer, prostate cancer, kidney injury, glucose, metals or pH where a signal is generated by the HEMT when a solution is contacted with the sensor. The solution can be blood, saliva, urine, breath condensate, or any solution suspected of containing any specific analyte for the sensor.
    Type: Application
    Filed: December 13, 2010
    Publication date: March 31, 2011
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Fan REN, Stephen John PEARTON, Tanmay LELE
  • Publication number: 20110068372
    Abstract: Embodiments of the invention include sensors comprising AlGaAs/GaAs high electron mobility transistors (HEMTs), inGaP/GaAs HEMTs. InAlAs/InGaAs HEMTs, AlGaAs/InGaAs PHEMTs, InAlAs/InGaAs PHEMTs, Sb based HEMTs, or InAs based HEMTs, the HEMTs having functionalization at a gate surface with target receptors. The target receptors allow sensitivity to targets (or substrates) for detecting breast cancer, prostate cancer, kidney injury, chloride, glucose, metals or pEI where a signal is generated by the HEMI when a solution is contacted with the sensor. The solution can be blood, saliva, urine, breath condensate, or any solution suspected of containing any specific analyte for the sensor.
    Type: Application
    Filed: March 20, 2009
    Publication date: March 24, 2011
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Fan Ren, Stephen John Pearton, Tanmay Lele, Hung-Ta Wang, Byoung-Sam Kang
  • Publication number: 20100188069
    Abstract: Embodiments of the invention include sensors comprising high electron mobility transistors (HEMTs) with capture reagents on a gate region of the HEMTs. Example sensors include HEMTs with a thin gold layer on the gate region and bound antibodies; a thin gold layer on the gate region and chelating agents; a non-native gate dielectric on the gate region; and nanorods of a non-native dielectric with an immobilized enzyme on the gate region. Embodiments including antibodies or enzymes can have the antibodies or enzymes bound to the Au-gate via a binding group. Other embodiments of the invention are methods of using the sensors for detecting breast cancer, prostate cancer, kidney injury, glucose, metals or pH where a signal is generated by the HEMT when a solution is contacted with the sensor. The solution can be blood, saliva, urine, breath condensate, or any solution suspected of containing any specific analyte for the sensor.
    Type: Application
    Filed: March 15, 2010
    Publication date: July 29, 2010
    Inventors: FAN REN, Stephen John Pearton, Tanmay Lele, Hung-Ta Wang, Byoung-Sam Kang