Patents by Inventor Tanya S. Kanigan

Tanya S. Kanigan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8105554
    Abstract: An interface is provided for storing microfluidic samples in a nanoliter sample chip. A fluid access structure provides a fluid access region to a selected subset of sample wells from an array of sample wells. A fluid introduction mechanism introduces a sample fluid to the fluid access region so that the sample wells in the selected subset are populated with the sample fluid without the unselected sample wells being populated with the sample fluid.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: January 31, 2012
    Assignee: Life Technologies Corporation
    Inventors: Tanya S. Kanigan, Steve Smith, John Linton, Robert Hess, Karl Yoder, Colin Brennan
  • Publication number: 20120021951
    Abstract: The invention features methods of making devices, or “platens”, having a high-density array of through-holes, as well as methods of cleaning and refurbishing the surfaces of the platens. The invention further features methods of making high-density arrays of chemical, biochemical, and biological compounds, having many advantages over conventional, lower-density arrays. The invention includes methods by which many physical, chemical or biological transformations can be implemented in serial or in parallel within each addressable through-hole of the devices. Additionally, the invention includes methods of analyzing the contents of the array, including assaying of physical properties of the samples.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 26, 2012
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Robert Hess, John Linton, Tanya S. Kanigan, Colin Brenan, Can Ozbal
  • Publication number: 20110319300
    Abstract: A method and an array filling system for loading a plurality of disparate sample containers, the sample containers comprising an integral structure. Each receptacle is characterized by a hydrophilic surface, and the receptacles are separated by a hydrophobic surface. The system has a liquid transfer device capable of holding liquid and adapted for motion to cause sequential communication of liquid held in the liquid transfer device with successive receptacles of the array by dragging the liquid across the hydrophobic surface.
    Type: Application
    Filed: September 9, 2011
    Publication date: December 29, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Ian Hunter, Colin J.H. Brenan, Tanya S. Kanigan
  • Patent number: 8029745
    Abstract: Systems for filling sample array by droplet dragging are provided. One aspect of the invention provides an array filling system for filling a platen having a platen surface and an array of receptacles, the receptacles having an internal surface and the receptacles separated by the platen surface, the system comprising: a liquid transfer device capable of holding liquid; and a controller configured to position the liquid transfer device in proximity to the platen surface and to move the liquid transfer device across the surface and over the receptacles to be filled so as to cause sequential communication of liquid in the liquid transfer device with the interior surface of each receptacle.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: October 4, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian Hunter, Colin J. H. Brenan, Tanya S. Kanigan
  • Publication number: 20110152108
    Abstract: One aspect of the invention provides container for thermal cycling a plurality of samples in a microfluidic array. The container includes a plurality of walls defining an interior volume and a conductive member for heating the interior volume. Another aspect of the invention provides container for thermal cycling a plurality of samples in a microfluidic array. The container includes a plurality of walls defining an interior volume and a plurality of conductive members for heating an interior volume. Another aspect of the invention provides a container for thermal cycling a plurality of samples in a microfluidic array. The container includes a plurality of walls defining an interior volume and a first conductive member located in the interior volume and adapted to contact a first end of the microfluidic array.
    Type: Application
    Filed: March 6, 2009
    Publication date: June 23, 2011
    Inventors: Colin J.H. Brenan, Thomas B. Morrison, Tanya S. Kanigan
  • Publication number: 20100261159
    Abstract: The invention features methods of making devices, or “platens”, having a high-density array of through-holes, as well as methods of cleaning and refurbishing the surfaces of the platens. The invention further features methods of making high-density arrays of chemical, biochemical, and biological compounds, having many advantages over conventional, lower-density arrays. The invention includes methods by which many physical, chemical or biological transformations can be implemented in serial or in parallel within each addressable through-hole of the devices. Additionally, the invention includes methods of analyzing the contents of the array, including assaying of physical properties of the samples.
    Type: Application
    Filed: August 10, 2006
    Publication date: October 14, 2010
    Inventors: Robert Hess, John Linton, Tanya S. Kanigan, Colin Brenan, Can Ozbal
  • Patent number: 7682565
    Abstract: A system for holding at least one of sample and reagent for analysis. The system includes a pair of parallel covers, at least one of which is light transmissive, of which pair a light transmissive cover forms a top, and of which pair the other forms a bottom. A frame is disposed between the covers to define, in relation to the covers, an interior volume. The frame and the covers are associated with one another to form a case, the case being substantially tight to liquids. A microfluidic array is disposed in the interior volume. The array includes a sheet of material having a pair of opposed surfaces, a thickness, and a plurality of through-holes running through the thickness between the surfaces, the through-holes containing at least one of sample and reagent.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: March 23, 2010
    Assignee: BioTrove, Inc.
    Inventors: John Linton, Karl Yoder, Robert Hess, Leila Hasan, Robert Ellis, Tanya S. Kanigan, Kristine Friesen, Arrin Katz, Colin Brenan, Tom Morrison, Javier Garcia
  • Publication number: 20090258797
    Abstract: Systems for filling sample array by droplet dragging are provided. One aspect of the invention provides an array filling system for filling a platen having a platen surface and an array of receptacles, the receptacles having an internal surface and the receptacles separated by the platen surface, the system comprising: a liquid transfer device capable of holding liquid; and a controller configured to position the liquid transfer device in proximity to the platen surface and to move the liquid transfer device across the surface and over the receptacles to be filled so as to cause sequential communication of liquid in the liquid transfer device with the interior surface of each receptacle.
    Type: Application
    Filed: May 19, 2009
    Publication date: October 15, 2009
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Ian Hunter, Colin J.H. Brenan, Tanya S. Kanigan
  • Patent number: 7547556
    Abstract: A method and an array filling system for loading a plurality of disparate sample containers, the sample containers comprising an integral structure. Each receptacle is characterized by a hydrophilic surface, and the receptacles are separated by a hydrophobic surface. The system has a liquid transfer device capable of holding liquid and adapted for motion to cause sequential communication of liquid held in the liquid transfer device with successive receptacles of the array by dragging the liquid across the hydrophobic surface.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: June 16, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian Hunter, Colin J. H. Brenan, Tanya S. Kanigan
  • Publication number: 20090062152
    Abstract: A thermal cycling device and a method of thermal cycling are provided. A thermal cycling device includes a fluid device system, a case, and a cycling head. The fluid delivery system develops a flow of controlled-temperature fluid. The case has a fluid-tight cavity for holding a microfluidic array. The array includes a sheet of material having a pair of opposed surfaces, a thickness, and a plurality of through-holes running through the thickness between the surfaces. The cycling head holds the case and delivers the flow of fluid over the case.
    Type: Application
    Filed: October 1, 2008
    Publication date: March 5, 2009
    Applicant: BIOTROVE, INC.
    Inventors: John Linton, Karl Yoder, Robert Hess, Leila Hasan, Robert Ellis, Tanya S. Kanigan, Kristine Friesen, Arrin Katz, Colin Brenan, Tom Morrison, Javier Garcia
  • Publication number: 20090062134
    Abstract: A method of conducting an assay on a plurality of samples is provided. The method includes the steps of performing an assay at each sample site in a sample array having greater than 100 sample sites simultaneously illuminating each sample site using one or more LEDs, and simultaneously imaging each of the sample sites to produce imaging data pertinent to the optical effect of each site. Each assay provides an optical effect.
    Type: Application
    Filed: October 3, 2008
    Publication date: March 5, 2009
    Applicant: BIOTROVE, INC.
    Inventors: John Linton, Karl Yoder, Robert Hess, Leila Hasan, Robert Ellis, Tanya S. Kanigan, Kristine Friesen, Arrin Katz, Colin Brenan, Tom Morrison, Javier Garcia
  • Patent number: 6893877
    Abstract: Methods for manufacturing and using an apparatus for manipulating and analyzing a large number of microscopic samples of a liquid or materials, including cells, in liquid suspension. Parallel through-holes are formed in a platen and loaded with a liquid. Loading may be performed in such a way as to create a gradient, with respect to the position of the through-holes, of the concentration of a particular substance or of another quantity. Mixing of the contents of through-holes may be obtained by bringing filled microwell arrays into contact with each other with registration of individual through-holes.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: May 17, 2005
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian Hunter, Colin J. H. Brenan, Tanya S. Kanigan
  • Publication number: 20040208792
    Abstract: A system for holding at least one of sample and reagent for analysis. The system includes a pair of parallel covers, at least one of which is light transmissive, of which pair a light transmissive cover forms a top, and of which pair the other forms a bottom. A frame is disposed between the covers to define, in relation to the covers, an interior volume. The frame and the covers are associated with one another to form a case, the case being substantially tight to liquids. A microfluidic array is disposed in the interior volume. The array includes a sheet of material having a pair of opposed surfaces, a thickness, and a plurality of through-holes running through the thickness between the surfaces, the through-holes containing at least one of sample and reagent.
    Type: Application
    Filed: December 22, 2003
    Publication date: October 21, 2004
    Inventors: John Linton, Karl Yoder, Robert Hess, Leila Hasan, Robert Ellis, Tanya S. Kanigan, Kristine Friesen, Arrin Katz, Colin Brenan, Tom Morrison, Javier Garcia
  • Publication number: 20040191924
    Abstract: Methods for loading a plurality of liquid samples into a through-hole array. Each transfer member of an array of transfer members is positioned for drawing a liquid sample from a distinct well of a microtiter plate. Liquid samples are drawn from wells of the microtiter plate and the array of transfer members is registered with a subset of through-holes of a through-hole array. The liquid samples are then dispensed from the transfer members into through-holes of the through-hole array.
    Type: Application
    Filed: April 8, 2004
    Publication date: September 30, 2004
    Applicant: Massachusetts Institute of Technology
    Inventors: Ian Hunter, Colin J.H. Brenan, Tanya S. Kanigan
  • Patent number: 6716629
    Abstract: The invention features methods of making devices, or “platens”, having a high-density array of through-holes, as well as methods of cleaning and refurbishing the surfaces of the platens. The invention further features methods of making high-density arrays of chemical, biochemical, and biological compounds, having many advantages over conventional, lower-density arrays. The invention includes methods by which many physical, chemical or biological transformations can be implemented in serial or in parallel within each addressable through-hole of the devices. Additionally, the invention includes methods of analyzing the contents of the array, including assaying of physical properties of the samples.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: April 6, 2004
    Assignee: BioTrove, Inc.
    Inventors: Robert A. Hess, John Linton, Tanya S. Kanigan, Colin Brenan, Can Ozbal
  • Publication number: 20030180807
    Abstract: The invention features methods of making devices, or “platens”, having a high-density array of through-holes, as well as methods of cleaning and refurbishing the surfaces of the platens. The invention further features methods of making high-density arrays of chemical, biochemical, and biological compounds, having many advantages over conventional, lower-density arrays. The invention includes methods by which many physical, chemical or biological transformations can be implemented in serial or in parallel within each addressable through-hole of the devices. Additionally, the invention includes methods of analyzing the contents of the array, including assaying of physical properties of the samples.
    Type: Application
    Filed: December 10, 2002
    Publication date: September 25, 2003
    Applicant: Biotrove, Inc., a Delaware Corporation
    Inventors: Robert A. Hess, John Linton, Tanya S. Kanigan, Colin Brenan, Can Ozbal
  • Publication number: 20030124716
    Abstract: The invention features methods of making devices, or “platens”, having a high-density array of through-holes, as well as methods of cleaning and refurbishing the surfaces of the platens. The invention further features methods of making high-density arrays of chemical, biochemical, and biological compounds, having many advantages over conventional, lower-density arrays. The invention includes methods by which many physical, chemical or biological transformations can be implemented in serial or in parallel within each addressable through-hole of the devices. Additionally, the invention includes methods of analyzing the contents of the array, including assaying of physical properties of the samples.
    Type: Application
    Filed: December 10, 2002
    Publication date: July 3, 2003
    Applicant: Biotrove, Inc., a Delaware corporation
    Inventors: Robert A. Hess, John Linton, Tanya S. Kanigan, Colin Brenan, Can Ozbal
  • Publication number: 20020094533
    Abstract: The invention features methods of making devices, or “platens”, having a high-density array of through-holes, as well as methods of cleaning and refurbishing the surfaces of the platens. The invention further features methods of making high-density arrays of chemical, biochemical, and biological compounds, having many advantages over conventional, lower-density arrays. The invention includes methods by which many physical, chemical or biological transformations can be implemented in serial or in parallel within each addressable through-hole of the devices. Additionally, the invention includes methods of analyzing the contents of the array, including assaying of physical properties of the samples.
    Type: Application
    Filed: October 10, 2001
    Publication date: July 18, 2002
    Inventors: Robert A. Hess, John Linton, Tanya S. Kanigan, Colin Brenan, Can Ozbal
  • Publication number: 20020001546
    Abstract: Methods for manufacturing and using an apparatus for manipulating and analyzing a large number of microscopic samples of a liquid or materials, including cells, in liquid suspension. Parallel through-holes are formed in a platen and loaded with a liquid. Loading may be performed in such a way as to create a gradient, with respect to the position of the through-holes, of the concentration of a particular substance or of another quantity. Mixing of the contents of through-holes may be obtained by bringing filled microwell arrays into contact with each other with registration of individual through-holes.
    Type: Application
    Filed: May 7, 2001
    Publication date: January 3, 2002
    Applicant: Massachusetts Institute of Technology
    Inventors: Ian Hunter, Colin J.H. Brenan, Tanya S. Kanigan
  • Patent number: 6249076
    Abstract: Embodiments of actuators having an active member including a polymer having a surface, an electrolyte coupled to the surface, and an electrolyte are provided. Actuators which, when an electrical potential is applied across the electrolyte between the active member and the counter electrode, exert force per unit area of at least 10 MPa are described. Particular designs utilizing stretch aligned conducting polymers as active members are discussed.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: June 19, 2001
    Assignee: Massachusetts Institute of Technology
    Inventors: John D. Madden, Tanya S. Kanigan, Serge Lafontaine, Ian W. Hunter