Patents by Inventor Tao Dao

Tao Dao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109851
    Abstract: The present disclosure provides methods for preparing MCL1 inhibitors or a salt thereof and related key intermediates.
    Type: Application
    Filed: August 1, 2023
    Publication date: April 4, 2024
    Inventors: Katrien Brak, Kae M. Bullock, Greg Cizio, Kathy Dao, Darryl D. Dixon, Joshua R. Dunetz, Luke D. Humphreys, Valerie Huynh, Michael A. Ischay, Trevor C. Johnson, Jeffrey E. Merit, Christopher S. Regens, Eric A. Standley, Dietrich P. Steinhuebel, Justin Y. Su, Tao Wu, Marshall D. Young
  • Patent number: 11859015
    Abstract: This invention provides peptides, immunogenic compositions and vaccines, and methods of treating, reducing the incidence of, and inducing immune responses to a WT1-expressing cancer, comprising heteroclitic peptides derived from the WT-1 protein.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: January 2, 2024
    Assignee: MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: David A. Scheinberg, Tao Dao
  • Publication number: 20230374140
    Abstract: The present technology relates generally to compositions that specifically recognize and bind to a NDC80 peptide complexed with a major histocompatibility antigen (e.g., HLA-A*02). The compositions of the present technology are useful in methods for treating NDC80-associated diseases (e.g., cancers) in a subject in need thereof.
    Type: Application
    Filed: October 8, 2021
    Publication date: November 23, 2023
    Inventors: Martin KLATT, Tao DAO, David A. SCHEINBERG, Zhiyuan YANG, Jianying LIU
  • Patent number: 11505599
    Abstract: The presently disclosed subject matter provides antigen-binding proteins (e.g., chimeric antigen receptors) and antibodies or antigen-binding portions thereof that bind to a Foxp3 peptide/MHC molecule complex. Such antibodies, fusion proteins and conjugates thereof are useful for inhibiting regulatory T cells and treating cancers.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: November 22, 2022
    Assignees: MEMORIAL SLOAN-KETTERING CANCER CENTER, EUREKA THERAPEUTICS, INC.
    Inventors: David A. Scheinberg, Tao Dao, Cheng Liu
  • Patent number: 11384144
    Abstract: The presently disclosed subject matter provides antigen-binding proteins that specifically bind to Preferentially expressed antigen of melanoma (PRAME), including humanized, chimeric and fully human antibodies against PRAME, antibody fragments (e.g., scFv, Fab and F(ab)2), chimeric antigen receptors (CARs), fusion proteins, and conjugates thereof. The antigen-binding proteins and antibodies bind to a PRAME peptide/HLA class I molecule complex. Such antibodies, fragments, fusion proteins and conjugates thereof are useful for the treatment of PRAME associated diseases, including for example, breast cancer, ovarian cancer, melanoma, lung cancer, gastrointestinal cancer, brain tumor, head and neck cancer, renal cancer, myeloma, neuroblastoma, mantle cell lymphoma, chronic myelocytic leukemia, multiple myeloma, acute lymphoblastic leukemia (ALL), acute myeloid/myelogenous leukemia (AML), Non-Hodgkin lymphoma (NHL), and Chronic lymphocytic leukemia (CLL).
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 12, 2022
    Assignees: MEMORIAL SLOAN-KETTERING CANCER CENTER, EUREKA THERAPEUTICS, INC.
    Inventors: David A. Scheinberg, Tao Dao, Cheng Liu, Hong Liu, Yiyang Xu, Su Yan
  • Publication number: 20220168408
    Abstract: This invention provides methods of treating, reducing the incidence of, and inducing immune responses to a WT1-expressing cancer, by administering a combination of WT1 peptides including each of: YMFPNAPYL, RSDELVRHHNMHQRNMTKL, PGCNKRYFKLSHLQMHSRKHTG, SGQAYMFPNAPYLPSCLES, NLMNLGATL, WNLMNLGATLKGVAA, and WNYMNLGATLKGVAA, or cytotoxic T cells induced by the combination of WT1 peptides. The combination of WT1 peptides may be administered to the subject via a WT1 delivery agent, i.e., in peptide form, or in the form of nucleic acids encoding the WT1 peptides, or in the form of immune cells comprising nucleic acids encoding the WT1 peptides, and/or comprising or presenting the WT1 peptides. The WT1 delivery agents or CTLs can be administered to the subject in a single composition (as a heptavalent immunotherapy composition), or multiple compositions, resulting in delivery of all seven WT1 peptides and induction of an immune response against the WT1-expressing cancer.
    Type: Application
    Filed: April 10, 2020
    Publication date: June 2, 2022
    Inventors: ANGELOS M. STERGIOU, NICHOLAS J. SARLIS, DAVID A. SCHEINBERG, TAO DAO
  • Patent number: 11242405
    Abstract: Antigen binding proteins specific for an HLA-A2 restricted Ras peptide are disclosed. The antigen binding proteins encompass antibodies in a variety of forms, including full-length antibodies, substantially intact antibodies, Fab fragments, F(ab?)2 fragments, and single chain Fv fragments. Fusion proteins, such as scFv fusions with immunoglobulin or T-cell receptor domains, and bispecific antibodies incorporating the specificity of the antigen binding region for each peptide are also contemplated by the disclosure. Furthermore, immunoconjugates may include antibodies to which is linked a radioisotope, fluorescent or other detectable marker, cytotoxin, or other molecule are also encompassed by the disclosure. Among other things, immunoconjugates can be used for delivery of an agent to elicit a therapeutic effect or to facilitate an immune effector function.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: February 8, 2022
    Assignees: MEMORIAL SLOAN-KETTERING CANCER CENTER, EUREKA THERAPEUTICS, INC.
    Inventors: David A. Scheinberg, Tao Dao, Cheng Liu
  • Publication number: 20210332150
    Abstract: Antigen binding proteins specific for an HLA-A2 restricted Ras peptide are disclosed. The antigen binding proteins encompass antibodies in a variety of forms, including full-length antibodies, substantially intact antibodies, Fab fragments, F(ab?)2 fragments, and single chain Fv fragments. Fusion proteins, such as scFv fusions with immunoglobulin or T-cell receptor domains, and bispecific antibodies incorporating the specificity of the antigen binding region for each peptide are also contemplated by the disclosure. Furthermore, immunoconjugates may include antibodies to which is linked a radioisotope, fluorescent or other detectable marker, cytotoxin, or other molecule are also encompassed by the disclosure. Among other things, immunoconjugates can be used for delivery of an agent to elicit a therapeutic effect or to facilitate an immune effector function.
    Type: Application
    Filed: September 20, 2017
    Publication date: October 28, 2021
    Inventors: David A. SCHEINBERG, Tao DAO, Cheng LIU
  • Publication number: 20210163624
    Abstract: The present invention provides antigen binding proteins that specifically bind to Wilms' tumor protein (WT1), including humanized, chimeric and fully human antibodies against WT1, antibody fragments, chimeric antigen receptors (CARs), fusion proteins, and conjugates thereof. The antigen binding proteins and antibodies bind to HLA-A0201-restricted WT1 peptide. Such antibodies, fragments, fusion proteins and conjugates thereof are useful for the treatment of WT1 associated cancers, including for example, breast cancer, ovarian cancer, prostate cancer, chronic myelocytic leukemia, multiple myeloma, acute lymphoblastic leukemia (ALL), acute myeloid/myelogenous leukemia (AML) and myelodysplastic syndrome (MDS). In more particular embodiments, the anti-WT1/A antibodies may comprise one or more framework region amino acid substitutions designed to improve protein stability, antibody binding and/or expression levels.
    Type: Application
    Filed: October 30, 2020
    Publication date: June 3, 2021
    Applicants: Memorial Sloan Kettering Cancer Center, Eureka Therapeutics, Inc.
    Inventors: David SCHEINBERG, Tao DAO, Cheng LIU, Su YAN
  • Publication number: 20200392183
    Abstract: This invention provides peptides, immunogenic compositions and vaccines, and methods of treating, reducing the incidence of, and inducing immune responses to a WT1-expressing cancer, comprising heteroclitic peptides derived from the WT-1 protein.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: David A. SCHEINBERG, Tao Dao
  • Patent number: 10858444
    Abstract: The present invention provides antigen binding proteins that specifically bind to Wilms' tumor protein (WT1), including humanized, chimeric and fully human antibodies against WT1, antibody fragments, chimeric antigen receptors (CARs), fusion proteins, and conjugates thereof. The antigen binding proteins and antibodies bind to HLA-A0201-restricted WT1 peptide. Such antibodies, fragments, fusion proteins and conjugates thereof are useful for the treatment of WT1 associated cancers, including for example, breast cancer, ovarian cancer, prostate cancer, chronic myelocytic leukemia, multiple myeloma, acute lymphoblastic leukemia (ALL), acute myeloid/myelogenous leukemia (AML) and myelodysplastic syndrome (MDS). In more particular embodiments, the anti-WT1/A antibodies may comprise one or more framework region amino acid substitutions designed to improve protein stability, antibody binding and/or expression levels.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: December 8, 2020
    Assignees: Memorial Sloan Kettering Cancer Center, Eureka Therapeutics, Inc.
    Inventors: David Scheinberg, Tao Dao, Cheng Liu, Su Yan
  • Patent number: 10815273
    Abstract: This invention provides peptides, immunogenic compositions and vaccines, and methods of treating, reducing the incidence of, and inducing immune responses to a WT1-expressing cancer, comprising heteroclitic peptides derived from the WT-1 protein.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: October 27, 2020
    Assignee: MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: David A. Scheinberg, Tao Dao
  • Publication number: 20190284262
    Abstract: The presently disclosed subject matter provides antigen-binding proteins (e.g., chimeric antigen receptors) and antibodies or antigen-binding portions thereof that bind to a Foxp3 peptide/MHC molecule complex. Such antibodies, fusion proteins and conjugates thereof are useful for inhibiting regulatory T cells and treating cancers.
    Type: Application
    Filed: January 13, 2017
    Publication date: September 19, 2019
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, EUREKA THERAPEUTICS, INC.
    Inventors: David A. Scheinberg, Tao Dao, Cheng Liu
  • Publication number: 20190144563
    Abstract: The present invention provides antigen binding proteins that specifically bind to Wilms' tumor protein (WT1), including humanized, chimeric and fully human antibodies against WT1, antibody fragments, chimeric antigen receptors (CARs), fusion proteins, and conjugates thereof. The antigen binding proteins and antibodies bind to HLA-A0201-restricted WT1 peptide. Such antibodies, fragments, fusion proteins and conjugates thereof are useful for the treatment of WT1 associated cancers, including for example, breast cancer, ovarian cancer, prostate cancer, chronic myelocytic leukemia, multiple myeloma, acute lymphoblastic leukemia (ALL), acute myeloid/myelogenous leukemia (AML) and myelodysplastic syndrome (MDS). In more particular embodiments, the anti-WT1/A antibodies may comprise one or more framework region amino acid substitutions designed to improve protein stability, antibody binding and/or expression levels.
    Type: Application
    Filed: August 6, 2018
    Publication date: May 16, 2019
    Applicants: Memorial Sloan Kettering Cancer Center, Eureka Therapeutics, Inc.
    Inventors: David SCHEINBERG, Tao DAO, Cheng LIU, Su YAN
  • Patent number: 10239952
    Abstract: Disclosed herein is a bi-specific form of a T cell receptor mimic (TCRm) mAb with reactivity to human immune effector cell antigen and a WT1 peptide/HLA-A epitope. This antibody selectively bound to leukemias and solid tumor cells expressing WT1 and HLA-A as well as activated resting human T cells to release interferon-(IFN-?) and to kill the target cancer cells in vitro. Importantly, the antibody mediated autologous T cell proliferation and directed potent cytotoxicity against fresh ovarian cancer cells. Therapeutic activity in vivo of the antibody was demonstrated in NOD SCID SCID Yc*(NSG) mice with three different human cancers expressing WT1/HLA-A2 including disseminated Ph+ acute lymphocytic leukemia (ALL), disseminated acute myeloid leukemia, and peritoneal mesothelioma. In both of the leukemia xenograft models, mice that received the antibody and T cells also showed longer survival and delayed limb paralysis.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: March 26, 2019
    Assignees: Memorial Sloan Kettering Cancer Center, Eureka Therapeutics, Inc.
    Inventors: David Scheinberg, Jingyi Xiang, Tao Dao, Su Yan, Cheng Liu
  • Patent number: 10040865
    Abstract: The present invention provides antigen binding proteins that specifically bind to Wilms' tumor protein (WT1), including humanized, chimeric and fully human antibodies against WT1, antibody fragments, chimeric antigen receptors (CARs), fusion proteins, and conjugates thereof. The antigen binding proteins and antibodies bind to HLA-A0201-restricted WT1 peptide. Such antibodies, fragments, fusion proteins and conjugates thereof are useful for the treatment of WT1 associated cancers, including for example, breast cancer, ovarian cancer, prostate cancer, chronic myelocytic leukemia, multiple myeloma, acute lymphoblastic leukemia (ALL), acute myeloid/myelogenous leukemia (AML) and myelodysplastic syndrome (MDS). In more particular embodiments, the anti-WT1/A antibodies may comprise one or more framework region amino acid substitutions designed to improve protein stability, antibody binding and/or expression levels.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: August 7, 2018
    Assignees: Memorial Sloan Kettering Cancer Center, Eureka Therapeutics, Inc.
    Inventors: David Scheinberg, Tao Dao, Cheng Liu, Su Yan
  • Publication number: 20180208626
    Abstract: This invention provides peptides, immunogenic compositions and vaccines, and methods of treating, reducing the incidence of, and inducing immune responses to a WT1-expressing cancer, comprising heteroclitic peptides derived from the WT-1 protein.
    Type: Application
    Filed: March 13, 2018
    Publication date: July 26, 2018
    Inventors: DAVID A SCHEINBERG, Tao Dao
  • Publication number: 20180148503
    Abstract: The presently disclosed subject matter provides antigen-binding proteins that specifically bind to Preferentially expressed antigen of melanoma (PRAME), including humanized, chimeric and fully human antibodies against PRAME, antibody fragments (e.g., scFv, Fab and F(ab)2), chimeric antigen receptors (CARs), fusion proteins, and conjugates thereof. The antigen-binding proteins and antibodies bind to a PRAME peptide/HLA class I molecule complex. Such antibodies, fragments, fusion proteins and conjugates thereof are useful for the treatment of PRAME associated diseases, including for example, breast cancer, ovarian cancer, melanoma, lung cancer, gastrointestinal cancer, brain tumor, head and neck cancer, renal cancer, myeloma, neuroblastoma, mantle cell lymphoma, chronic myelocytic leukemia, multiple myeloma, acute lymphoblastic leukemia (ALL), acute myeloid/myelogenous leukemia (AML), Non-Hodgkin lymphoma (NHL), and Chronic lymphocytic leukemia (CLL).
    Type: Application
    Filed: November 20, 2017
    Publication date: May 31, 2018
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, EUREKA THERAPEUTICS, INC.
    Inventors: David A. Scheinberg, Tao Dao, Cheng Liu, Hong Liu, Yiyang Xu, Su Yan
  • Publication number: 20180134804
    Abstract: Antigen binding proteins specific for an HLA-A2 restricted Ras peptide are disclosed. The antigen binding proteins encompass antibodies in a variety of forms, including full-length antibodies, substantially intact antibodies, Fab fragments, F(ab?)2 fragments, and single chain Fv fragments. Fusion proteins, such as scFv fusions with immunoglobulin or T-cell receptor domains, and bispecific antibodies incorporating the specificity of the antigen binding region for each peptide are also contemplated by the disclosure. Furthermore, immunoconjugates may include antibodies to which is linked a radioisotope, fluorescent or other detectable marker, cytotoxin, or other molecule are also encompassed by the disclosure. Among other things, immunoconjugates can be used for delivery of an agent to elicit a therapeutic effect or to facilitate an immune effector function.
    Type: Application
    Filed: September 20, 2017
    Publication date: May 17, 2018
    Inventors: David A. SCHEINBERG, Tao DAO, Cheng LIU
  • Patent number: 9919037
    Abstract: This invention provides peptides, immunogenic compositions and vaccines, and methods of treating, reducing the incidence of, and inducing immune responses to a WT1-expressing cancer, comprising heteroclitic peptides derived from the WT-1 protein.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: March 20, 2018
    Assignee: Memorial Sloan Kettering Cancer Center
    Inventors: David A. Scheinberg, Tao Dao