Patents by Inventor Tatsuhiko Ema

Tatsuhiko Ema has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8071157
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: December 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Publication number: 20110212255
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Application
    Filed: December 3, 2007
    Publication date: September 1, 2011
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Publication number: 20110008545
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Application
    Filed: September 20, 2010
    Publication date: January 13, 2011
    Inventors: Shinichi ITO, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Patent number: 7799368
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: September 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Publication number: 20100167213
    Abstract: A semiconductor device manufacturing method includes: forming a first anti-reflective coating on a semiconductor wafer; forming a second anti-reflective coating on the first anti-reflective coating; forming a resist film on the second anti-reflective coating; selectively exposing the resist film to light; developing the resist film and the anti-reflective coatings after the light exposure; and processing the semiconductor wafer using as a mask a pattern of the resist film obtained by the development. The photosensitizer concentration of the first anti-reflective coating is higher than the photosensitizer concentration of the second anti-reflective coating.
    Type: Application
    Filed: November 18, 2009
    Publication date: July 1, 2010
    Inventors: Yuriko SEINO, Tatsuhiko EMA
  • Publication number: 20100143849
    Abstract: A semiconductor device manufacturing method includes: forming a foundation film on a semiconductor wafer; after forming the foundation film, forming a reaction layer of the semiconductor wafer and the foundation film therebetween; removing the foundation film and leaving the reaction layer on the semiconductor wafer; forming a resist film on the reaction layer; patterning the resist film; and using the patterned resist film as a mask to perform processing on the semiconductor wafer.
    Type: Application
    Filed: December 4, 2009
    Publication date: June 10, 2010
    Inventors: Tatsuhiko Ema, Yuriko Seino, Shinichi Ito, Hirokazu Kato
  • Publication number: 20100104988
    Abstract: There is disclosed a developing method of developing a photo-sensitive resist film in which a desired pattern is exposed, including subjecting the exposed photosensitive resist film to a first developing treatment; supplying a cleaning solution having an oxidizing property or alkalinity with respect to the surface of the resist film to the photosensitive resist film subject to the first developing treatment to perform a first cleaning treatment; subjecting the photosensitive resist film subjected to the first cleaning treatment to a second developing treatment; and subjecting the photosensitive resist film subjected to the second developing treatment to a second cleaning treatment.
    Type: Application
    Filed: December 31, 2009
    Publication date: April 29, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kei HAYASAKI, Shinichi ITO, Tatsuhiko EMA, Riichiro TAKAHASHI
  • Patent number: 7669608
    Abstract: There is disclosed a substrate treating method comprising supplying a treating solution onto a substrate, and continuously discharging a first cleaning solution to the substrate from a first discharge region disposed in a nozzle, while moving the nozzle and substrate with respect to each other in one direction, wherein a length of a direction crossing at right angles to the direction of the first discharge region is equal to or more than a maximum diameter or longest side of the substrate, the nozzle continuously spouts a first gas to the substrate from a first jet region, and the length of a direction crossing at right angles to the direction of the first jet region is equal to or more than the maximum diameter or longest side of the substrate.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: March 2, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kei Hayasaki, Shinichi Ito, Tatsuhiko Ema, Riichiro Takahashi
  • Patent number: 7604832
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: October 20, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Publication number: 20090190108
    Abstract: A system and method of leveling the topography of a semiconductor wafer surface is presented. The system may induce low-order lens aberration to control the focal plane dynamically. The system may include a leveling sensor which measures the changes in topography on the surface, as well as an analyzer to determine the aberration to be induced. In addition, the system may include a controller that dynamically adjusts at least one lens to induce such aberration. In another arrangement, the system may control the focal plane by dividing the exposure slit into smaller slits. In this arrangement, the analyzer may be used to determine the appropriate number of divisions to make to produce a focal plane that closely matches the surface of the wafer. In addition, the controller may adjust the stage height and tilt for each division to produce such a focal plane.
    Type: Application
    Filed: January 30, 2008
    Publication date: July 30, 2009
    Applicant: TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.
    Inventors: Tatsuhiko Ema, Kenji Konomi
  • Patent number: 7364839
    Abstract: A pattern forming method comprises forming a photosensitive resin film on a substrate, exposing the photosensitive resin film, forming a pattern of the photosensitive resin film by supplying a developing solution to the photosensitive resin film, and slimming to remove a surface layer of the pattern by causing the pattern to contact with an activated water.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: April 29, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kei Hayasaki, Shinichi Ito, Tomoyuki Takeishi, Kenji Kawano, Tatsuhiko Ema
  • Publication number: 20080090001
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Application
    Filed: December 3, 2007
    Publication date: April 17, 2008
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Patent number: 7312018
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N)
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: December 25, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Publication number: 20060151015
    Abstract: In this disclosure, air flow is formed above chemical liquid film and a move of the chemical liquid is generated by making the air flow into a contact with the surface of chemical liquid. Further, a negative pressure is generated in a space between a processing object substrate and a plate by rotating the plate. Consequently, uniformity of processing of chemical liquid is improved, so that liquid removing step can be carried out effectively. As a result, yield rate of chemical liquid treatment can be improved.
    Type: Application
    Filed: March 10, 2006
    Publication date: July 13, 2006
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Ito, Riichiro Takahashi, Tatsuhiko Ema, Katsuya Okamura
  • Patent number: 7067033
    Abstract: In this disclosure, air flow is formed above chemical liquid film and a move of the chemical liquid is generated by making the air flow into a contact with the surface of chemical liquid. Further, a negative pressure is generated in a space between a processing object substrate and a plate by rotating the plate. Consequently, uniformity of processing of chemical liquid is improved, so that liquid removing step can be carried out effectively. As a result, yield rate of chemical liquid treatment can be improved.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: June 27, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Ito, Riichiro Takahashi, Tatsuhiko Ema, Katsuya Okamura
  • Patent number: 7018481
    Abstract: There is disclosed a substrate treating method comprising supplying a treating solution onto a substrate, and continuously discharging a first cleaning solution to the substrate from a first discharge region disposed in a nozzle, while moving the nozzle and substrate with respect to each other in one direction, wherein a length of a direction crossing at right angles to the direction of the first discharge region is equal to or more than a maximum diameter or longest side of the substrate, the nozzle continuously spouts a first gas to the substrate from a first jet region, and the length of a direction crossing at right angles to the direction of the first jet region is equal to or more than the maximum diameter or longest side of the substrate.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: March 28, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kei Hayasaki, Shinichi Ito, Tatsuhiko Ema, Riichiro Takahashi
  • Publication number: 20050087217
    Abstract: There is disclosed a substrate treating method comprising supplying a treating solution onto a substrate, and continuously discharging a first cleaning solution to the substrate from a first discharge region disposed in a nozzle, while moving the nozzle and substrate with respect to each other in one direction, wherein a length of a direction crossing at right angles to the direction of the first discharge region is equal to or more than a maximum diameter or longest side of the substrate, the nozzle continuously spouts a first gas to the substrate from a first jet region, and the length of a direction crossing at right angles to the direction of the first jet region is equal to or more than the maximum diameter or longest side of the substrate.
    Type: Application
    Filed: November 16, 2004
    Publication date: April 28, 2005
    Inventors: Kei Hayasaki, Shinichi Ito, Tatsuhiko Ema, Riichiro Takahashi
  • Publication number: 20050026456
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N)
    Type: Application
    Filed: August 27, 2004
    Publication date: February 3, 2005
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Publication number: 20050022732
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Application
    Filed: August 27, 2004
    Publication date: February 3, 2005
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Patent number: 6842281
    Abstract: An ultraviolet microscope comprises an observation device which observes a specimen with ultraviolet light; a gas supply device which, during the observation with ultraviolet light, supplies an inert gas to surroundings of the specimen; and a timing control device which controls supply timing of the inert gas by the gas supply device, and the timing control device controls the gas supply device so as to cause preliminary supply of the inert gas before the observation of the specimen with ultraviolet light, and also so as to cause regular supply of the inert gas at least during the observation of the specimen with ultraviolet light.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: January 11, 2005
    Assignees: Nikon Corporation, Kabushiki Kaisha Toshiba
    Inventors: Atsushi Tsurumune, Jiro Mizuno, Shinichi Ito, Riichiro Takahashi, Tatsuhiko Ema