Patents by Inventor Tatsuo Morotomi

Tatsuo Morotomi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8119749
    Abstract: The present invention relates to a method of obtaining a (meth)acrylate-based polymer from a reaction solution containing the (meth)acrylate-based polymer, the method including (a) adding an acid to the reaction solution containing the (meth)acrylate-based polymer which is obtained by polymerizing a monomer composed mainly of a (meth)acrylate in a water-insoluble organic solvent in the presence of a metal compound, (b) washing the reaction solution to which the acid has been added by admixing water at 90° C. or more, (c) separating the mixed solution of the reaction solution and water generated by the washing in (b) into an organic solvent solution layer and an aqueous solution layer, and (d) isolating each of the organic solvent solution layer and the aqueous solution layer in order to obtain the (meth)acrylate-based polymer from the isolated organic solvent solution layer.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: February 21, 2012
    Assignee: Kuraray Co., Ltd.
    Inventors: Kenichi Hamada, Susumu Matsunaga, Kazunori Watanabe, Masaji Kato, Jun Nagai, Tatsufumi Watanabe, Tatsuo Morotomi, Hiroshi Oshima
  • Patent number: 7709415
    Abstract: Activated carbon useful as polarizable electrode material for an electric double-layer capacitor can be obtained by mixing a carbonaceous material and an alkali metal hydroxide while maintaining a solid state, granulating the obtained mixture while maintaining its solid state, dehydrating the obtained granulated substance while maintaining its solid state, and subjecting the granulated dehydration product obtained in the dehydration step to an activation treatment. The preferred pressure of the granulation treatment in the granulation step is 0.01 to 300 Torr, and the preferred temperature of the granulation treatment is 90 to 140° C. The preferred pressure of the dehydration treatment in the dehydration step is 0.01 to 10 Torr, and the preferred temperature of the dehydration treatment is 200 to 400° C.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: May 4, 2010
    Assignees: Kuraray Chemical Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Nozomu Sugo, Hideharu Iwasaki, Takanori Kitamura, Tatsuo Morotomi, Tsuyoshi Kowaka, Teruhiro Okada, Shushi Nishimura, Takeshi Fujino, Shigeki Oyama, Yuji Kawabuchi
  • Publication number: 20090118450
    Abstract: Problems: To easily and efficiently obtain a high quality (meth)acrylate-based polymer containing small residual amount of metal components (an aluminum component, an alkali metal component and other metal components) and having high purity and excellent properties such as heat resistance, transparency and others. Means for Solving the Problems: The present invention provides a method of obtaining a (meth)acrylate-based polymer by adding an acid to a reaction solution containing the (meth)acrylate-based polymer obtained by polymerizing a (meth)acrylate-based monomer in a water-insoluble organic solvent in the presence of a metal compound such as a metal-containing polymerization initiator, an organoaluminum compound and the like, washing the reaction solution to which the acid has been added by admixing water at 90° C.
    Type: Application
    Filed: July 21, 2006
    Publication date: May 7, 2009
    Applicant: Kuraray Co., Ltd.
    Inventors: Kenichi Hamada, Susumu Matsunaga, Kazunori Watanabe, Masaji Kato, Jun Nagai, Tatsufumi Watanabe, Tatsuo Morotomi, Hiroshi Oshima
  • Publication number: 20050181941
    Abstract: Activated carbon useful as polarizable electrode material for an electric double-layer capacitor can be obtained by mixing a carbonaceous material and an alkali metal hydroxide while maintaining a solid state, granulating the obtained mixture while maintaining its solid state, dehydrating the obtained granulated substance while maintaining its solid state, and subjecting the granulated dehydration product obtained in the dehydration step to an activation treatment. The preferred pressure of the granulation treatment in the granulation step is 0.01 to 300 Torr, and the preferred temperature of the granulation treatment is 90 to 140° C. The preferred pressure of the dehydration treatment in the dehydration step is 0.01 to 10 Torr, and the preferred temperature of the dehydration treatment is 200 to 400° C.
    Type: Application
    Filed: April 22, 2003
    Publication date: August 18, 2005
    Inventors: Nozomu Sugo, Hideharu Iwasaki, Takanori Kitamura, Tatsuo Morotomi, Tsuyoshi Kowaka, Teruhiro Okada, Shushi Nishimura, Takeshi Fujino, Shigeki Oyama, Yuji Kawabuchi