Patents by Inventor Tatsuro Midorikawa

Tatsuro Midorikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230352103
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Applicant: KIOXIA CORPORATION
    Inventors: Tatsuro MIDORIKAWA, Masami MASUDA
  • Patent number: 11742033
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: August 29, 2023
    Assignee: Kioxia Corporation
    Inventors: Tatsuro Midorikawa, Masami Masuda
  • Publication number: 20220130471
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Application
    Filed: January 10, 2022
    Publication date: April 28, 2022
    Applicant: Kioxia Corporation
    Inventors: Tatsuro MIDORIKAWA, Masami MASUDA
  • Patent number: 11250919
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: February 15, 2022
    Assignee: KIOXIA CORPORATION
    Inventors: Tatsuro Midorikawa, Masami Masuda
  • Publication number: 20210012843
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 14, 2021
    Applicant: TOSHIBA MEMORY CORPORATION
    Inventors: Tatsuro MIDORIKAWA, Masami MASUDA
  • Patent number: 10818364
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: October 27, 2020
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Tatsuro Midorikawa, Masami Masuda
  • Publication number: 20200066359
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Application
    Filed: October 31, 2019
    Publication date: February 27, 2020
    Applicant: TOSHIBA MEMORY CORPORATION
    Inventors: Tatsuro MIDORIKAWA, Masami MASUDA
  • Patent number: 10515706
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: December 24, 2019
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Tatsuro Midorikawa, Masami Masuda
  • Publication number: 20190180827
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Applicant: TOSHIBA MEMORY CORPORATION
    Inventors: Tatsuro MIDORIKAWA, Masami MASUDA
  • Patent number: 10242748
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: March 26, 2019
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Tatsuro Midorikawa, Masami Masuda
  • Publication number: 20170140831
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 18, 2017
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tatsuro MIDORIKAWA, Masami MASUDA
  • Patent number: 9589656
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: March 7, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tatsuro Midorikawa, Masami Masuda
  • Patent number: 8976606
    Abstract: A voltage generating circuit includes first and second step-up circuits, each having first and second input terminals and an output terminal and configured to increase a voltage level of an input signal supplied through the first input terminal and output the signal with the increased voltage level through the output terminal. The second input terminal of the first step-up circuit is connected to the output terminal of the second step-up circuit and the second input terminal of the second step-up circuit is connected to the output terminal of the first step-up circuit. The voltage generating circuit may also include third and fourth step-up circuits and fifth and sixth step-up circuits having similar configurations.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Noriyasu Kumazaki, Masafumi Uemura, Tatsuro Midorikawa
  • Publication number: 20140225582
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Application
    Filed: April 21, 2014
    Publication date: August 14, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tatsuro MIDORIKAWA, Masami Masuda
  • Patent number: 8755235
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: June 17, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuro Midorikawa, Masami Masuda
  • Publication number: 20130322180
    Abstract: A voltage generating circuit includes first and second step-up circuits, each having first and second input terminals and an output terminal and configured to increase a voltage level of an input signal supplied through the first input terminal and output the signal with the increased voltage level through the output terminal. The second input terminal of the first step-up circuit is connected to the output terminal of the second step-up circuit and the second input terminal of the second step-up circuit is connected to the output terminal of the first step-up circuit. The voltage generating circuit may also include third and fourth step-up circuits and fifth and sixth step-up circuits having similar configurations.
    Type: Application
    Filed: March 1, 2013
    Publication date: December 5, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Noriyasu KUMAZAKI, Masafumi Uemura, Tatsuro Midorikawa
  • Patent number: 8593874
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a first output circuit, a rectifying circuit, a second output circuit, and a detection circuit. The first boost circuit outputs a first voltage in first and second operation modes. The first output circuit is connected to the first boost circuit, and outputs the first voltage as a second voltage in the first operation mode. The rectifying circuit is connected to the first boost circuit, and outputs a third voltage which is lower than the first voltage in the first operation mode. The second output circuit short-circuits the rectifying circuit in the second operation mode, and outputs the first voltage as a fourth voltage. The detection circuit detects the second and fourth voltages which are supplied from the first and second output circuits.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tatsuro Midorikawa
  • Publication number: 20120105036
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a voltage division circuit, a first detection circuit, a capacitor and a first switch. The first boost circuit outputs a first voltage. The voltage division circuit divides the first voltage. The first detection circuit is configured to detect a first monitor voltage supplied to the first input terminal, based on a reference voltage which is supplied to a second input terminal of the first detection circuit, and to control an operation of the first boost circuit. The capacitor is connected between an output terminal of the first boost circuit and the first input terminal of the first detection circuit. The first switch cuts off a connection between the capacitor and the first detection circuit, based on an output signal of the first detection circuit, until the first voltage is output from the first boost circuit.
    Type: Application
    Filed: September 18, 2011
    Publication date: May 3, 2012
    Inventors: Tatsuro MIDORIKAWA, Masami Masuda
  • Publication number: 20120106255
    Abstract: According to one embodiment, a voltage generation circuit includes a first boost circuit, a first output circuit, a rectifying circuit, a second output circuit, and a detection circuit. The first boost circuit outputs a first voltage in first and second operation modes. The first output circuit is connected to the first boost circuit, and outputs the first voltage as a second voltage in the first operation mode. The rectifying circuit is connected to the first boost circuit, and outputs a third voltage which is lower than the first voltage in the first operation mode. The second output circuit short-circuits the rectifying circuit in the second operation mode, and outputs the first voltage as a fourth voltage. The detection circuit detects the second and fourth voltages which are supplied from the first and second output circuits.
    Type: Application
    Filed: September 22, 2011
    Publication date: May 3, 2012
    Inventor: Tatsuro MIDORIKAWA
  • Patent number: 7864614
    Abstract: A semiconductor memory device includes a memory cell array which includes a plurality of memory cells which are arrayed in a matrix at intersections between a plurality of word lines and a plurality of bit lines and a power supply circuit which includes a first band gap reference circuit which outputs a first output voltage, and a second band gap reference circuit which outputs a second output voltage having lower temperature characteristics than the first output voltage on a low temperature side, and generates a power supply voltage on the basis of the second output voltage at a time of a data write operation of the memory cells.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuro Midorikawa, Yasuhiko Honda, Gyosho Chin