Patents by Inventor Tatsuya Maruo

Tatsuya Maruo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7471502
    Abstract: Electrical storage devices having excellent low-temperature properties can be obtained by using a quaternary salt (or ionic liquid) of general formula (1) below as an electrolyte salt for electrical storage devices or a liquid electrolyte for electrical storage devices. In formula (1), R1 to R4 are each independently an alkyl group of 1 to 5 carbons or an alkoxyalkyl group of the formula R?—O—(CH2)n—, with the proviso that at least one group from among R1 to R4 is the above alkoxyalkyl group. X is a nitrogen or phosphorus atom, and Y is a monovalent anion.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: December 30, 2008
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Takaya Sato, Gen Masuda, Ryutaro Nozu, Tatsuya Maruo
  • Patent number: 7297289
    Abstract: Electrical storage devices having excellent low-temperature properties can be obtained by using a quaternary salt (or ionic liquid) of general formula (1) below as an electrolyte salt for electrical storage devices or a liquid electrolyte for electrical storage devices. In formula (1), R1 to R4 are each independently an alkyl group of 1 to 5 carbons or an alkoxyalkyl group of the formula R?—O—(CH2)n—, with the proviso that at least one group from among R1 to R4 is the above alkoxyalkyl group. X is a nitrogen or phosphorus atom, and Y is a monovalent anion.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: November 20, 2007
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Takaya Sato, Gen Masuda, Ryutaro Nozu, Tatsuya Maruo
  • Publication number: 20070172667
    Abstract: An active material powder mixture for batteries or a carbonaceous material powder mixture for electrical double-layer capacitors is composed of a battery active material or a carbonaceous material in combination with an electrically conductive powder that adheres to the periphery of the active material or carbonaceous material and has an average particle size of 10 nm to 10 ?m. The battery active material powder mixture may be used to make electrodes for secondary batteries. The carbonaceous material powder mixture may be used to make polarizable electrodes for electrical double-layer capacitors. Secondary cells produced using the active material powder mixture can lower an impedance of an electrode and operate at a high capacity and a high current, have a high rate property, and are thus well-suited for use as lithium secondary cells and lithium ion secondary cells.
    Type: Application
    Filed: March 29, 2007
    Publication date: July 26, 2007
    Applicant: NISSHINBO INDUSTRIES, INC.
    Inventors: Takaya Sato, Hidenori Nakata, Hiroshi Yoshida, Tatsuya Maruo, Shigenori Minamiru
  • Publication number: 20070031729
    Abstract: Electrical storage devices having excellent low-temperature properties can be obtained by using a quaternary salt (or ionic liquid) of general formula (1) below as an electrolyte salt for electrical storage devices or a liquid electrolyte for electrical storage devices. In formula (1), R1 to R4 are each independently an alkyl group of 1 to 5 carbons or an alkoxyalkyl group of the formula R?—O—(CH2)n—, with the proviso that at least one group from among R1 to R4 is the above alkoxyalkyl group. X is a nitrogen or phosphorus atom, and Y is a monovalent anion.
    Type: Application
    Filed: September 29, 2006
    Publication date: February 8, 2007
    Applicant: NISSHINBO INDUSTRIES, INC.
    Inventors: Takaya Sato, Gen Masuda, Ryutaro Nozu, Tatsuya Maruo
  • Patent number: 7154737
    Abstract: Secondary cells and electrical double-layer capacitors of excellent charge-discharge efficiency, stability and low-temperature properties can be obtained using nonaqueous electrolytes which contain an ionic liquid that has general formula (1) below and is liquid at not higher than 50° C. and an ion-conductive polymer. In formula (1), R1 to R4 are each independently an alkyl group of 1 to 5 carbons or an alkoxyalkyl group of the formula R?—O—(CH2)n— (R? being methyl or ethyl, and the letter n being an integer from 1 to 4), and any two from among R1, R2, R3 and R4 may together form a ring, with the proviso that at least one of R1 to R4 is an alkoxyalkyl group of the above formula. X is a nitrogen atom or a phosphorus atom, and Y is a monovalent anion.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: December 26, 2006
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Tatsuya Maruo, Shoko Marukane, Gen Masuda, Takaya Sato
  • Patent number: 7088572
    Abstract: A polymer gel electrolyte includes an electrolyte solution composed of a plasticizer with at least two carbonate structures on the molecule and an electrolyte salt, in combination with a matrix polymer. Secondary batteries made with the polymer gel electrolyte can operate at a high capacitance and a high current, have a broad service temperature range and a high level of safety, and are thus particularly well-suited for use in such applications as lithium secondary cells and lithium ion secondary cells. Electrical double-layer capacitors made with the polymer gel electrolyte have a high output voltage, a large output current, a broad service temperature range and excellent safety.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: August 8, 2006
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Hiroshi Yoshida, Kimiyo Hata, Tatsuya Maruo, Takaya Sato
  • Publication number: 20060061330
    Abstract: A charging system for a rechargeable battery with a rapid charge capacity. This invention relates to the charging system for the rechargeable battery with a rapid charge capacity which can be recharged at a public place. The charging system comprises a charging equipment for the rapid charge battery, a measurement display unit which measures and displays a charging condition and deterioration of the rapid charge battery, and a fee collection device which collects a charging fee.
    Type: Application
    Filed: August 11, 2003
    Publication date: March 23, 2006
    Inventors: Takaya Sato, Yoshiki Kobayashi, Ryutaro Nozu, Tatsuya Maruo, Kimiyo Banno, Masaaki Isobe
  • Publication number: 20060034035
    Abstract: Secondary cells and electrical double-layer capacitors of excellent charge-discharge efficiency, stability and low-temperature properties can be obtained using nonaqueous electrolytes which contain an ionic liquid that has general formula (1) below and is liquid at not higher than 50° C. and an ion-conductive polymer. In formula (1), R1 to R4 are each independently an alkyl group of 1 to 5 carbons or an alkoxyalkyl group of the formula R?—O—(CH2)n—(R? being methyl or ethyl, and the letter n being an integer from 1 to 4), and any two from among R1, R2, R3 and R4 may together form a ring, with the proviso that at least one of R1 to R4 is an alkoxyalkyl group of the above formula. X is a nitrogen atom or a phosphorus atom, and Y is a monovalent anion.
    Type: Application
    Filed: September 19, 2003
    Publication date: February 16, 2006
    Inventors: Tatsuya Maruo, Shoko Marukane, Gen Masuda, Takaya Sato
  • Publication number: 20060035137
    Abstract: A nonaqueous electrolyte which contains an ionic liquid having general formula (1) below and a melting point not higher than 50° C., a compound which reductively decomposes at a more noble potential than the ionic liquid, and a lithium salt. In formula (1), R1 to R4 are each independently an alkyl group of 1 to 5 carbons or an alkoxyalkyl group of the formula R?—O—(CH2)n— (R? being methyl or ethyl, and the letter n being an integer from 1 to 4), and any two from among R1, R2, R3 and R4 may together form a ring, with the proviso that at least one of R1 to R4 is an alkoxyalkyl group of the above formula. X is a nitrogen atom or a phosphorus atom, and Y is a monovalent anion.
    Type: Application
    Filed: August 22, 2003
    Publication date: February 16, 2006
    Applicant: Nisshinbo Industries, Inc.
    Inventors: Tatsuya Maruo, Shoko Marukane, Gen Masuda, Takaya Sato
  • Publication number: 20050231894
    Abstract: A polymer gel electrolyte includes an electrolyte solution composed of a plasticizer with at least two carbonate structures on the molecule and an electrolyte salt, in combination with a matrix polymer. Secondary batteries made with the polymer gel electrolyte can operate at a high capacitance and a high current, have a broad service temperature range and a high level of safety, and are thus particularly well-suited for use in such applications as lithium secondary cells and lithium ion secondary cells. Electrical double-layer capacitors made with the polymer gel electrolyte have a high output voltage, a large output current, a broad service temperature range and excellent safety.
    Type: Application
    Filed: May 12, 2005
    Publication date: October 20, 2005
    Inventors: Hiroshi Yoshida, Kimiyo Hata, Tatsuya Maruo, Takaya Sato
  • Patent number: 6949317
    Abstract: A polymer gel electrolyte includes an electrolyte solution composed of a plasticizer with at least two carbonate structures on the molecule and an electrolyte salt, in combination with a matrix polymer. Secondary batteries made with the polymer gel electrolyte can operate at a high capacitance and a high current, have a broad service temperature range and a high level of safety, and are thus particularly well-suited for use in such applications as lithium secondary cells and lithium ion secondary cells. Electrical double-layer capacitors made with the polymer gel electrolyte have a high output voltage, a large output current, a broad service temperature range and excellent safety.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: September 27, 2005
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Hiroshi Yoshida, Kimiyo Hata, Tatsuya Maruo, Takaya Sato
  • Publication number: 20040234865
    Abstract: A nonaqueous electrolyte secondary battery is made up of a positive electrode and a negative electrode which are composed of a lithium ion-occluding and releasing material and a binder polymer, at least one separator for separating the positive and negative electrodes, and a nonaqueous electrolyte which is composed of a lithium salt and an organic solvent. The electrolyte includes also a substance which is oxidized at the positive electrode at a cell voltage of from 4.1 V to 5.2 V, and which provokes an oxidation reaction that differs from the lithium-releasing reaction. The presence of this substance improves the overcharge characteristics and safety of the nonaqueous electrolyte secondary battery.
    Type: Application
    Filed: March 25, 2004
    Publication date: November 25, 2004
    Inventors: Takaya Sato, Kimiyo Banno, Tatsuya Maruo, Ryutaro Nozu, Kentaro Takagi
  • Publication number: 20040146786
    Abstract: The addition of a compound which reductively decomposes on a potential at least 1.0 V higher than the equilibrium potential of metallic lithium and lithium ions (a potential versus Li/Li+ of +1.0 V or more) to an electrolyte solution for a secondary cell keeps propylene carbonate, when used as an organic electrolyte therein, from decomposing on the negative electrode. Such addition also improves the cycle properties, electrical capacity and low-temperature characteristics of the cell.
    Type: Application
    Filed: November 7, 2003
    Publication date: July 29, 2004
    Inventors: Takaya Sato, Hiroki Iida, Tatsuya Maruo, Kimiyo Banno
  • Publication number: 20040139587
    Abstract: A polymer gel electrolyte-forming composition which includes a pregel composition having a viscosity at 20° C. of at most 100 cP is impregnated into an electrical double-layer capacitor assembly or a cell assembly composed of a positive electrode, a negative electrode and a separator. This process enables the polymer gel electrolyte-forming composition to rapidly and uniformly penetrate into the cell or capacitor assembly and provides a battery or capacitor having excellent cycle properties.
    Type: Application
    Filed: November 7, 2003
    Publication date: July 22, 2004
    Inventors: Takaya Sato, Hiroki Iida, Tatsuya Maruo, Kimiyo Banno
  • Publication number: 20040094741
    Abstract: Electrical storage devices having excellent low-temperature properties can be obtained by using a quaternary salt (or ionic liquid) of general formula (1) below as an electrolyte salt for electrical storage devices or a liquid electrolyte for electrical storage devices.
    Type: Application
    Filed: September 25, 2003
    Publication date: May 20, 2004
    Inventors: Takaya Sato, Gen Masuda, Ryutaro Nozu, Tatsuya Maruo
  • Publication number: 20040076885
    Abstract: A polymer gel electrolyte composition is composed primarily of (A) a polymeric compound having an average degree of polymerization of at least 20 which contains polyvinyl alcohol units of the following general formula (1): 1
    Type: Application
    Filed: October 17, 2003
    Publication date: April 22, 2004
    Inventors: Takaya Sato, Tatsuya Maruo, Kimiyo Banno
  • Patent number: 6696204
    Abstract: A polymer battery which includes a cell assembly having a positive electrode, a negative electrode, and a separator composed primarily of a fluoropolymer is manufactured by impregnating the cell assembly with an electrolyte composition containing (A) an ion-conductive salt, (B) a solvent in which the ion-conductive salt is soluble and (C) a compound having at least two reactive double bonds per molecule, then reacting the component C compound to form a three-dimensional network structure. The polymer battery has a high safety, a good thermal cycling resistance and robust characteristics even when held at an elevated temperature, making it particularly suitable for use as a lithium secondary cell or a lithium ion secondary cell.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: February 24, 2004
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Takaya Sato, Kimiyo Hata, Tatsuya Maruo
  • Publication number: 20020122985
    Abstract: An active material powder mixture for batteries or a carbonaceous material powder mixture for electrical double-layer capacitors is composed of a battery active material or a carbonaceous material in combination with an electrically conductive powder that adheres to the periphery of the active material or carbonaceous material and has an average particle size of 10 nm to 10 &mgr;pm. The battery active material powder mixture may be used to make electrodes for secondary batteries. The carbonaceous material powder mixture may be used to make polarizable electrodes for electrical double-layer capacitors. Secondary cells produced using the active material powder mixture can lower an impedance of an electrode and operate at a high capacity and a high current, have a high rate property, and are thus well-suited for use as lithium secondary cells and lithium ion secondary cells.
    Type: Application
    Filed: January 15, 2002
    Publication date: September 5, 2002
    Inventors: Takaya Sato, Hidenori Nakata, Hiroshi Yoshida, Tatsuya Maruo, Shigenori Minamiru
  • Publication number: 20020102464
    Abstract: A polymer gel electrolyte includes an electrolyte solution composed of a plasticizer with at least two carbonate structures on the molecule and an electrolyte salt, in combination with a matrix polymer. Secondary batteries made with the polymer gel electrolyte can operate at a high capacitance and a high current, have a broad service temperature range and a high level of safety, and are thus particularly well-suited for use in such applications as lithium secondary cells and lithium ion secondary cells. Electrical double-layer capacitors made with the polymer gel electrolyte have a high output voltage, a large output current, a broad service temperature range and excellent safety.
    Type: Application
    Filed: December 5, 2001
    Publication date: August 1, 2002
    Inventors: Hiroshi Yoshida, Kimiyo Hata, Tatsuya Maruo, Takaya Sato
  • Publication number: 20020061449
    Abstract: An ion-conductive composition includes an electrolyte solution made of an ion-conductive salt and a solvent in which the ion-conductive salt is soluble, and a thermoplastic resin having a specific swelling ratio when immersed in the electrolyte solution. The invention is also directed at a gel electrolyte produced by shaping the thermoplastic resin, then immersing it in an electrolyte solution to effect swelling. High-performance non-aqueous electrolyte batteries and electrical double-layer capacitors can be built using a thermoplastic resin-containing electrode binder composition in which the resin bonds well with active materials or activated carbon and which has an excellent adhesion to current conductors.
    Type: Application
    Filed: September 19, 2001
    Publication date: May 23, 2002
    Inventors: Tatsuya Maruo, Hiroshi Yoshida, Takaya Sato