Patents by Inventor Tatsuya Nishizawa

Tatsuya Nishizawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10967866
    Abstract: A power-train controlling apparatus controls a power train of an engine electric hybrid vehicle. The power train is provided with an engine, a catalytic converter, an oxygen-level sensor, an engaging element, and an electric rotating machine. The power-train controlling apparatus includes a fuel injection controller, a catalyst diagnosing unit, and an engaging-element controller. The fuel injection controller stops fuel injection to the engine during coasting of the vehicle while the engaging element is engaged, introduces oxygen to the catalytic converter, and resumes the fuel injection in a fuel-rich state while the vehicle is running. The catalyst diagnosing unit diagnoses the catalytic converter after the resuming of the fuel injection. The engaging-element controller prohibits transition of the engaging element to a released state during a period between the stopping of the fuel injection and completion of the diagnosing of the catalytic converter.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: April 6, 2021
    Assignee: SUBARU CORPORATION
    Inventors: Atsushi Kaneko, Tatsuya Nishizawa
  • Publication number: 20200180630
    Abstract: A power-train controlling apparatus controls a power train of an engine electric hybrid vehicle. The power train is provided with an engine, a catalytic converter, an oxygen-level sensor, an engaging element, and an electric rotating machine. The power-train controlling apparatus includes a fuel injection controller, a catalyst diagnosing unit, and an engaging-element controller. The fuel injection controller stops fuel injection to the engine during coasting of the vehicle while the engaging element is engaged, introduces oxygen to the catalytic converter, and resumes the fuel injection in a fuel-rich state while the vehicle is running. The catalyst diagnosing unit diagnoses the catalytic converter after the resuming of the fuel injection. The engaging-element controller prohibits transition of the engaging element to a released state during a period between the stopping of the fuel injection and completion of the diagnosing of the catalytic converter.
    Type: Application
    Filed: November 5, 2019
    Publication date: June 11, 2020
    Applicant: SUBARU CORPORATION
    Inventors: Atsushi KANEKO, Tatsuya NISHIZAWA
  • Patent number: 7782131
    Abstract: A balanced amplifier (1) is provided with: a first operational amplifier (11) whose reverse-phase input terminal is connected to an input voltage source (30) and whose reverse-phase input terminal is connected to an output terminal of the first operational amplifier; a second operational amplifier (12) whose positive-phase input terminal is connected to the input voltage source and whose reverse-phase input terminal is connected to an output terminal of the second operational amplifier; and a voltage division circuit (20i, 20j, 20k, 20l) for dividing a reference voltage supplied from a reference voltage source (40), the reference voltage source being connected to a positive-phase input terminal of each of the first operational amplifier and the operational amplifier through the voltage division circuit.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: August 24, 2010
    Assignee: Pioneer Corporation
    Inventor: Tatsuya Nishizawa
  • Publication number: 20090134940
    Abstract: A balanced amplifier (1) is provided with: a first operational amplifier (11) whose reverse-phase input terminal is connected to an input voltage source (30) and whose reverse-phase input terminal is connected to an output terminal of the first operational amplifier; a second operational amplifier (12) whose positive-phase input terminal is connected to the input voltage source and whose reverse-phase input terminal is connected to an output terminal of the second operational amplifier; and a voltage division circuit (20i, 20j, 20k, 20l) for dividing a reference voltage supplied from a reference voltage source (40), the reference voltage source being connected to a positive-phase input terminal of each of the first operational amplifier and the operational amplifier through the voltage division circuit.
    Type: Application
    Filed: September 6, 2006
    Publication date: May 28, 2009
    Applicant: PIONEER CORPORATION
    Inventor: Tatsuya Nishizawa