Patents by Inventor Tatsuyuki Aoki

Tatsuyuki Aoki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10773224
    Abstract: A continuous mixing apparatus for a powder/granular material and a viscous liquid, with a mixing cylinder, a shaft member which is on a central axis of the mixing cylinder and rotates inside the mixing cylinder, and a plurality of mixing paddles disposed on a surface of the shaft member, wherein the mixing cylinder is with a powder/granular material feed port on one end portion, a mixed material discharge port on the other end portion, and a viscous liquid injection unit between the powder/granular material feed port and the mixed material discharge port, and the plurality of mixing paddles are disposed on the shaft member so as to form a spiral around the central axis, the plurality of mixing paddles being, in at least a portion between the viscous liquid injection unit and the mixed material discharge port, attached to provide first rows having an attachment angle of 5° to 60°.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: September 15, 2020
    Assignee: SINTOKOGIO, LTD.
    Inventors: Takahumi Oba, Tatsuyuki Aoki, Mikio Yoshino, Taisuke Horie, Yukinori Aoki
  • Publication number: 20180280990
    Abstract: A molding sand reclamation method and reclamation system effectively separates magnetically attracted matter from molding sand. The molding sand reclamation method includes removing metal powder and metal pieces by magnetic separation with a first magnetic flux density and removing magnetically attracted matter by magnetic separation with a second magnetic flux density higher than the first magnetic flux density from molding sand separated from a casting by shot blasting, and removing by dry mechanical reclamation, from the molding sand, substances including carbonized matter adhered to the surface of the molding sand.
    Type: Application
    Filed: August 3, 2016
    Publication date: October 4, 2018
    Applicant: SINTOKOGIO, LTD.
    Inventors: Takahumi OBA, Junichi IWASAKI, Kazuya ABE, Tatsuyuki AOKI
  • Publication number: 20180243701
    Abstract: A continuous mixing apparatus for a powder/granular material and a viscous liquid, with a mixing cylinder, a shaft member which is on a central axis of the mixing cylinder and rotates inside the mixing cylinder, and a plurality of mixing paddles disposed on a surface of the shaft member, wherein the mixing cylinder is with a powder/granular material feed port on one end portion, a mixed material discharge port on the other end portion, and a viscous liquid injection unit between the powder/granular material feed port and the mixed material discharge port, and the plurality of mixing paddles are disposed on the shaft member so as to form a spiral around the central axis, the plurality of mixing paddles being, in at least a portion between the viscous liquid injection unit and the mixed material discharge port, attached to provide first rows having an attachment angle of 5° to 60°.
    Type: Application
    Filed: October 12, 2016
    Publication date: August 30, 2018
    Applicant: SINTOKOGIO, LTD.
    Inventors: Takahumi OBA, Tatsuyuki AOKI, Mikio YOSHINO, Taisuke HORIE, Yukinori AOKI
  • Publication number: 20180133719
    Abstract: A method includes measuring a water content and a magnetized matter content of molding sand discharged from green sand casting equipment; comparing the measured water content with a first control value, and if the water content exceeds the first control value, drying the molding sand until the water content becomes equal to or less than the first control value; comparing the measured magnetized matter content with a second control value, and if the magnetized matter content exceeds the second control value, magnetically separating the molding sand until the magnetized matter content becomes equal to or less than the second control value; thereafter, reclaiming the molding sand by dry mechanical reclamation until a loss-on-ignition becomes equal to or less than a third control value; and classifying the molding sand until a total clay content becomes equal to or less than a fourth control value.
    Type: Application
    Filed: April 18, 2016
    Publication date: May 17, 2018
    Applicant: SINTOKOGIO, LTD.
    Inventors: Takahumi OBA, Junichi IWASAKI, Kazuya ABE, Tatsuyuki AOKI
  • Patent number: 9441719
    Abstract: A lock-up device is disposed between a front cover and a turbine in a torque converter to mechanically connect the front cover and the turbine. The lock-up device includes a clutch part and a release part. The clutch part is disposed in a power transmission path from the front cover to the turbine and is configured to be in a clutch-on state of transmitting a power from the front cover to the turbine in a set posture. The release part is configured to be actuated by a hydraulic pressure being increased in a space on a turbine-side of the piston to turn the clutch part from the clutch-on state to a clutch-off state and to block transmission of the power from the front cover to the turbine.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: September 13, 2016
    Assignee: EXEDY Corporation
    Inventors: Tatsuyuki Aoki, Kozo Yamamoto, Ken Mototsune, Yoshihiro Matsuoka
  • Publication number: 20160109012
    Abstract: A lock-up device is disposed between a front cover and a turbine in a torque converter to mechanically connect the front cover and the turbine. The lock-up device includes a clutch part and a release part. The clutch part is disposed in a power transmission path from the front cover to the turbine and is configured to be in a clutch-on state of transmitting a power from the front cover to the turbine in a set posture. The release part is configured to be actuated by a hydraulic pressure being increased in a space on a turbine-side of the piston to turn the clutch part from the clutch-on state to a clutch-off state and to block transmission of the power from the front cover to the turbine.
    Type: Application
    Filed: December 28, 2015
    Publication date: April 21, 2016
    Inventors: Tatsuyuki AOKI, Kozo YAMAMOTO, Ken MOTOTSUNE, Yoshihiro MATSUOKA
  • Patent number: 9249871
    Abstract: A lock-up device is a device disposed in a space produced between a front cover and a turbine in a torque converter so as to mechanically connect the front cover and the turbine, and includes a clutch part and a release part. The clutch part is disposed in a power transmission path from the front cover to the turbine, and is configured to be in a clutch-on state of transmitting a power from the front cover to the turbine in a set posture. The release part is configured to be actuated by means of a hydraulic pressure, turn the clutch part of the clutch-on state into a clutch-off state, and block transmission of the power from the front cover to the turbine.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: February 2, 2016
    Assignee: EXEDY Corporation
    Inventors: Tatsuyuki Aoki, Kozo Yamamoto, Ken Mototsune, Yoshihiro Matsuoka
  • Publication number: 20160017969
    Abstract: A stator according to the present invention includes a stator hub, a large number of blades radially provided in a projecting manner at regular intervals on an outer periphery of the stator hub, and a stator core formed so as to surround outer ends of the respective blades. The stator is integrated by separately molding a front side stator member and a rear side stator member as two axially split members, respectively, and then joining the front side stator member and the rear side stator member.
    Type: Application
    Filed: July 10, 2015
    Publication date: January 21, 2016
    Applicant: EXEDY CORPORATION
    Inventors: Kouzou Mori, Tatsuyuki Aoki
  • Publication number: 20160017970
    Abstract: A lock-up device is a device disposed in a space produced between a front cover and a turbine in a torque converter so as to mechanically connect the front cover and the turbine, and includes a clutch part and a release part. The clutch part is disposed in a power transmission path from the front cover to the turbine, and is configured to be in a clutch-on state of transmitting a power from the front cover to the turbine in a set posture. The release part is configured to be actuated by means of a hydraulic pressure, turn the clutch part of the clutch-on state into a clutch-off state, and block transmission of the power from the front cover to the turbine.
    Type: Application
    Filed: April 17, 2012
    Publication date: January 21, 2016
    Applicant: EXEDY Corporation
    Inventors: Tatsuyuki AOKI, Kozo YAMAMOTO, Ken MOTOTSUNE, Yoshihiro MATSUOKA
  • Publication number: 20140034436
    Abstract: A lock-up device is a device disposed in a space produced between a front cover and a turbine in a torque converter so as to mechanically connect the front cover and the turbine, and includes a clutch part and a release part. The clutch part is disposed in a power transmission path from the front cover to the turbine, and is configured to be in a clutch-on state of transmitting a power from the front cover to the turbine in a set posture. The release part is configured to be actuated by means of a hydraulic pressure, turn the clutch part of the clutch-on state into a clutch-off state, and block transmission of the power from the front cover to the turbine.
    Type: Application
    Filed: April 17, 2012
    Publication date: February 6, 2014
    Inventors: Tatsuyuki Aoki, Kozo Yamamoto, Ken Motosune, Yoshihiro Matsuoka
  • Patent number: 6872142
    Abstract: Coil springs 33 and 36 couple input and output rotary members 2 and 3 together such that they can rotate relative to each other. The coil springs 33 and 36 have a torsion characteristic having a positive region and a negative region that has a lower rigidity than the positive region. A second friction generating section 71 is arranged such that friction is generated rotationally-between the input rotary member 2 and the output rotary member 3 due to the elastic force of the coil springs 33 and 36 when the two rotary members 2 and 3 rotate relative to each other. A friction suppressing mechanism secures rotational gaps 91 and 92 on only the negative side of the torsion characteristic. These rotational gaps serve to prevent the elastic force of the coil springs 33 and 36 from acting on the second friction generating section 71 within a prescribed angular range.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: March 29, 2005
    Assignee: Exedy Corporation
    Inventors: Tatsuyuki Aoki, Hiroshi Uehara
  • Patent number: 6857514
    Abstract: A damper mechanism is provided to suppress the enlargement of a prescribed angle in a damper mechanism. A clutch disk assembly 1 has an input rotary member 2, a spline hub 3, a damper section 4, a large friction mechanism 13, a friction suppressing mechanism, and an elastic member 104. The spline hub 3 is arranged to rotate relative to the input rotary member 2. The damper section 4 couples the input rotary member 2 and the spline hub 3 together rotationally. The large friction mechanism 13 can generate friction when the input rotary member 2 and the spline hub rotate relative to each other. The friction suppressing mechanism is a rotational gap ?ACp for preventing the large friction mechanism operating within a prescribed angular range. The elastic member 104 softens the impact between the members that touch against each other at the end of the prescribed angular range.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: February 22, 2005
    Assignee: Exedy Corporation
    Inventors: Yasuyuki Hashimoto, Michitomo Masaki, Tatsuyuki Aoki
  • Patent number: 6789655
    Abstract: A damper mechanism is provided to suppress the enlargement of a prescribed angle in a damper mechanism. A clutch disk assembly 1 has an input rotary member 2, a spline hub 3, a damper section 4, a large friction mechanism 13, a friction suppressing mechanism, and an elastic member 104. The spline hub 3 is arranged to rotate relative to the input rotary member 2. The damper section 4 couples the input rotary member 2 and the spline hub 3 together rotationally. The large friction mechanism 13 can generate friction when the input rotary member 2 and the spline hub rotate relative to each other. The friction suppressing mechanism is a rotational gap &thgr;ACp for preventing the large friction mechanism operating within a prescribed angular range. The elastic member 104 softens the impact between the members that touch against each other at the end of the prescribed angular range.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: September 14, 2004
    Assignee: Exedy Corporation
    Inventors: Yasuyuki Hashimoto, Michitomo Masaki, Tatsuyuki Aoki
  • Publication number: 20040129525
    Abstract: A damper mechanism is provided to suppress the enlargement of a prescribed angle in a damper mechanism. A clutch disk assembly 1 has an input rotary member 2, a spline hub 3, a damper section 4, a large friction mechanism 13, a friction suppressing mechanism, and an elastic member 104. The spline hub 3 is arranged to rotate relative to the input rotary member 2. The damper section 4 couples the input rotary member 2 and the spline hub 3 together rotationally. The large friction mechanism 13 can generate friction when the input rotary member 2 and the spline hub rotate relative to each other. The friction suppressing mechanism is a rotational gap &thgr;ACp for preventing the large friction mechanism operating within a prescribed angular range. The elastic member 104 softens the impact between the members that touch against each other at the end of the prescribed angular range.
    Type: Application
    Filed: December 2, 2003
    Publication date: July 8, 2004
    Applicant: Exedy Corporation
    Inventors: Yasuyuki Hashimoto, Michitomo Masaki, Tatsuyuki Aoki
  • Publication number: 20040108182
    Abstract: A damper mechanism is provided to suppress the enlargement of a prescribed angle in a damper mechanism. A clutch disk assembly 1 has an input rotary member 2, a spline hub 3, a damper section 4, a large friction mechanism 13, a friction suppressing mechanism, and an elastic member 104. The spline hub 3 is arranged to rotate relative to the input rotary member 2. The damper section 4 couples the input rotary member 2 and the spline hub 3 together rotationally. The large friction mechanism 13 can generate friction when the input rotary member 2 and the spline hub rotate relative to each other. The friction suppressing mechanism is a rotational gap &thgr;ACp for preventing the large friction mechanism operating within a prescribed angular range. The elastic member 104 softens the impact between the members that touch against each other at the end of the prescribed angular range.
    Type: Application
    Filed: December 2, 2003
    Publication date: June 10, 2004
    Applicant: Exedy Corporation
    Inventors: Yasuyuki Hashimoto, Michitomo Masaki, Tatsuyuki Aoki
  • Publication number: 20030045362
    Abstract: Coil springs 33 and 36 couple input and output rotary members 2 and 3 together such that they can rotate relative to each other. The coil springs 33 and 36 have a torsion characteristic having a positive region and a negative region that has a lower rigidity than the positive region. A second friction generating section 71 is arranged such that friction is generated rotationally-between the input rotary member 2 and the output rotary member 3 due to the elastic force of the coil springs 33 and 36 when the two rotary members 2 and 3 rotate relative to each other. A friction suppressing mechanism secures rotational gaps 91 and 92 on only the negative side of the torsion characteristic. These rotational gaps serve to prevent the elastic force of the coil springs 33 and 36 from acting on the second friction generating section 71 within a prescribed angular range.
    Type: Application
    Filed: August 21, 2002
    Publication date: March 6, 2003
    Applicant: EXEDY CORPORATION
    Inventors: Tatsuyuki Aoki, Hiroshi Uehara
  • Publication number: 20020124684
    Abstract: A damper mechanism is provided to suppress the enlargement of a prescribed angle in a damper mechanism. A clutch disk assembly 1 has an input rotary member 2, a spline hub 3, a damper section 4, a large friction mechanism 13, a friction suppressing mechanism, and an elastic member 104. The spline hub 3 is arranged to rotate relative to the input rotary member 2. The damper section 4 couples the input rotary member 2 and the spline hub 3 together rotationally. The large friction mechanism 13 can generate friction when the input rotary member 2 and the spline hub rotate relative to each other. The friction suppressing mechanism is a rotational gap &thgr;ACp for preventing the large friction mechanism operating within a prescribed angular range. The elastic member 104 softens the impact between the members that touch against each other at the end of the prescribed angular range.
    Type: Application
    Filed: March 1, 2002
    Publication date: September 12, 2002
    Applicant: EXEDY CORPORATION
    Inventors: Yasuyuki Hashimoto, Michitomo Masaki, Tatsuyuki Aoki
  • Patent number: 6186010
    Abstract: Both end surfaces of a head portion and an axial portion of a bolt are formed into a curved surface having a predetermined curvature in order to provide a bolt which allows accurate axial tension measurement without changing various settings of an axial tension detection device. Upon ultrasonic radiation applied from a piezoelectric element into a top surface of a head portion of the bolt, the top surface thereof serves as an ultrasonic lens to allow ultrasonic propagation in convergence within the bolt. If the bottom end surface of the axial portion of the bolt is formed into a curved surface, the bottom end surface thereof will also serve as the ultrasonic lens to allow propagation of the reflection to return to the piezoelectric element in convergence. The ultrasonic propagation path within the bolt is not diffused, which allows the ultrasonic radiation to be reflected from the bottom surface of the axial portion of the bolt so as to be detected by the piezoelectric element.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: February 13, 2001
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takashi Eguchi, Tomoji Sakai, Tatsuyuki Aoki