Patents by Inventor Taylor W. Aronhalt

Taylor W. Aronhalt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918210
    Abstract: A staple cartridge is disclosed. The staple cartridge can comprise a cartridge body comprising a deck and a bottom surface opposite the deck. The staple cartridge can comprise a plurality of staple cavities, wherein each staple cavity extends into the cartridge body from the deck to the bottom surface. Additionally, a plurality of wells can be defined into the staple cartridge from the deck to a lowermost surface of the well. A plurality of staples can be removably positioned in the staple cavities. The staple cartridge can comprise a tissue thickness compensator releasably secured to the cartridge body, wherein the tissue thickness compensator comprises a compensator body and a plurality of extensions extending from the compensator body into the wells, wherein at least one extension is compressed within one of the wells. Each well can surround at least one staple cavity and/or can extend between at least two staple cavities.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: March 5, 2024
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Lauren S. Weaner, Jerome R. Morgan, Michael J. Vendely, Taylor W. Aronhalt, Chester O. Baxter, III, Mark S. Zeiner
  • Patent number: 11918275
    Abstract: Disclosed is a method of adapting energy modality due to a short circuit or tissue type grasped in the jaws of an end effector of a surgical instrument. The method includes selecting an electrode in an array of segmented electrodes during a pre-energy activation cycle. The method includes applying a sub-therapeutic electrical signal to the selected electrode to differentiate between a shorted electrode and low impedance tissue grasped in the jaws of the end effector. The method includes determining the selected electrode is shorted based on a measured electrical parameter received by the control circuit after applying the sub-therapeutic electrical signal and blending monopolar and bipolar RF energy. The method includes determining that the selected electrode is shorted and switching output energy of the RF generator between monopolar and bipolar RF energy.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: March 5, 2024
    Assignee: CILAG GMBH INTERNATIONAL
    Inventors: Frederick E. Shelton, IV, Taylor W. Aronhalt, Shane R. Adams, Daniel V. Boguszewski, Nicholas J. Ross
  • Patent number: 11911027
    Abstract: A surgical stapler, or fastening instrument, may generally comprise a layer, such as a tissue thickness compensator, for example, releasably attached to a fastener cartridge and/or anvil by a flowable attachment portion. The flowable attachment portion may be indefinitely flowable. The flowable attachment portion may be flowable from the time that layer is installed to the fastener cartridge to the time in which the layer is implanted to patient tissue. The flowable attachment portion may comprise a pressure sensitive adhesive. The flowable attachment portion may comprise an adhesive laminate comprising a base layer comprising the tissue thickness compensator and an adhesive layer on at least a portion of a surface of the base layer comprising the pressure sensitive adhesive. Articles of manufacture comprising flowable attachment portion and methods of making and using the flowable attachment portion are also described.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: February 27, 2024
    Assignee: Cilag GmbH International
    Inventors: Taylor W. Aronhalt, Michael J. Vendely, Lauren S. Weaner, Brandon J. Lloyd, Frederick E. Shelton, IV, Michael J. Miller, Michael T. Isaacs, Emily Ann Schellin, John V. Hunt, John E. Feds
  • Patent number: 11896443
    Abstract: A surgical system assembly is disclosed. The surgical system assembly includes a first surgical system and a second surgical system coupled to the first surgical system. The second surgical system includes a control circuit. The control circuit is configured to operate in a first mode or a second mode and control one or more functions of the first surgical system when the second surgical system is in the second mode.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: February 13, 2024
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Taylor W. Aronhalt
  • Patent number: 11896232
    Abstract: A surgical instrument includes a stapling assembly and an anvil configured to cooperate to compress, staple, and cut tissue. The stapling assembly includes a deck member having a deck surface that faces distally and includes a plurality of staple openings configured to receive a plurality of staples, and a knife member having a distal end that defines a cutting edge. The anvil includes an anvil surface having a plurality of staple forming pockets configured to form the staples, and a washer positioned adjacent to the anvil surface and having a proximal face. The cutting edge of the knife member is configured to cut through the tissue and the proximal face when the surgical instrument is fired. The proximal face includes a tissue gripping feature configured to stabilize and inhibit the tissue from translating across the washer and the anvil surface during firing.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: February 13, 2024
    Assignee: Cilag GmbH International
    Inventors: Ryan J. Laurent, Bradley A. Arnold, Taylor W. Aronhalt, Sean M. Starrett, Logan R. Rose, Anthony Nguyen
  • Publication number: 20240041453
    Abstract: A staple cartridge comprising a cartridge body including staple formation features is disclosed.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Inventors: Frederick E. Shelton, IV, Taylor W. Aronhalt, Jordan B. Wong, Shane R. Adams, Mark S. Zeiner
  • Publication number: 20240032920
    Abstract: A staple cartridge comprising a power management circuit is disclosed.
    Type: Application
    Filed: October 5, 2023
    Publication date: February 1, 2024
    Inventors: Frederick E. Shelton, IV, Shane R. Adams, Taylor W. Aronhalt, Morgan R. Hunter, Patrick L. Creamer, Jason L. Harris
  • Patent number: 11883024
    Abstract: A method of operating an articulatable surgical instrument. The method includes providing a rotary drive motion to a rotary drive member of a surgical end effector and converting the rotary drive motion to an upper axial motion and a lower axial motion at locations that are distal to the articulation joint. The method further includes applying the upper axial motion to an upper portion of a firing member and applying the lower axial motion to a lower portion of the firing member such that the upper axial motion and lower axial motion drives the firing member distally through the surgical end effector from a starting position to an ending position.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: January 30, 2024
    Assignee: Cilag GmbH International
    Inventors: Gregory J. Bakos, Darryl A. Parks, Benjamin D. Dickerson, Steven G. Hall, Robert J. Simms, Spencer J. Witte, Taylor W. Aronhalt, Paul Moubarak, William C. Ryle
  • Publication number: 20240023966
    Abstract: A method for adaptive control of surgical network control and interaction is disclosed. The surgical network includes a surgical feedback system. The surgical feedback system includes a surgical instrument, a data source, and a surgical hub configured to communicably couple to the data source and the surgical instrument. The surgical hub includes a control circuit. The method includes receiving, by the control circuit, information related to devices communicatively coupled to the surgical network; and adaptively controlling, by the control circuit, the surgical network based on the received information.
    Type: Application
    Filed: August 23, 2023
    Publication date: January 25, 2024
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Gregory J. Bakos, Michael J. Vendely, Taylor W. Aronhalt, Mark S. Zeiner, Jeffrey D. Messerly, Hilary A. Reinhardt
  • Patent number: 11864747
    Abstract: Circular stapling instruments and anvil assemblies. The anvil assemblies may have collapsible anvil support members that may be inserted through an opening in a patient and then expanded to be attached to an anvil plate assembly that has a staple-forming surface thereon. The anvil support member is attachable to the anvil plate assembly in such a way that when the anvil assembly is coupled to the stapling head of a circular stapler, the staple-forming surface is in substantial registry with the staples supported in the stapling head. A variety of different anvil support members and anvil plate assemblies are disclosed.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: January 9, 2024
    Assignee: Cilag GmbH International
    Inventors: Taylor W. Aronhalt, Frederick E. Shelton, IV, Christopher J. Schall, Joseph E. Young, Barry C. Worrell, Jerome R. Morgan, William B. Weisenburgh, II, Christopher J. Hess, Emily A. Schellin
  • Publication number: 20240000474
    Abstract: A surgical instrument includes a shaft assembly, an end effector, an energy drive system, a circuit assembly, and a body assembly. Body assembly has a first shroud portion removably affixed to a second shroud portion by a shroud coupling in a connected state. The shroud coupling detaches the first shroud portion from the second shroud portion in a disconnected state. The first and second shroud portions in the connected state encloses and inhibits access to at least a portion of at least one of the circuit assembly or the energy drive system. The first and second shroud portions in the disconnected state allow access to the at least the portion of at least one of the circuit assembly or the energy drive system for removal of the at least the portion of at least one of the circuit assembly or the energy drive system.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Shane R. Adams, Taylor W. Aronhalt, Robert N. Carranza, Aaron J. Chow, Matthew D. Cowperthwait, Guion Y. Lucas, Nicholas J. Ross, Patrick J. Scoggins
  • Publication number: 20240000526
    Abstract: A robotic surgical system including a controller, a surgical instrument, and a tool. The surgical instrument is configured to interact with a patient. The surgical instrument is operatively coupled with the controller. The tool is operatively coupled with the robotic surgical system. The tool includes a disassembly feature. The disassembly feature of the tool is configured to disconnect at least a portion of the surgical instrument from the robotic surgical system in response to instructions from the controller.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Taylor W. Aronhalt, David A. Bruns, Matthew E. Derrico, Kevin M. Fiebig, Cameron D. McLain
  • Publication number: 20240000476
    Abstract: A surgical kit and related methods of assembly and disassembly include a surgical instrument having an end effector, a shaft assembly, and a body assembly. The surgical instrument includes a predetermined access portion configured to be at least partially removed for accessing an interior therein. The surgical kit also includes an instrument tool assembly with a tool body, a torque wrench connected to the tool body, and a removal portion for gaining access to the interior of the surgical instrument.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Shane R. Adams, Taylor W. Aronhalt, Cameron D. McLain
  • Publication number: 20240006048
    Abstract: A method of reclaiming portions of a surgical kit having a surgical instrument includes disassembling the surgical instrument and determining a disposal methodology of the surgical kit. Furthermore, reclaiming further includes verifying reuse capacity of a portion of the surgical instrument and determining a waste stream for the portion of the surgical instrument. The method also includes disassembling the portion of the surgical instrument from a remainder of the surgical instrument at a predetermined region of the surgical instrument to thereby reclaim the portion of the surgical instrument according to the waste stream.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Shane R. Adams, Taylor W. Aronhalt, David A. Bruns, Bruce Brunson, JR., Ellen Burkart, Robert N. Carranza, Matthew D. Cowperthwait, Aaron J. Chow, Matthew E. Derrico, Kevin M. Fiebig, Guion Y. Lucas, Cameron D. McLain, Joseph D. Paulowski, Cesar Perez, Nicholas J. Ross, Patrick J. Scoggins, Rebecca Spatholt, Gregory A. Trees
  • Publication number: 20240000449
    Abstract: A tissue thickness compensator can comprise a compensator body and at least one vessel contained in the compensator body. The vessel can define an inner cavity which can comprise an inner atmosphere having a pressure which is lower than the atmospheric pressure of the atmosphere surrounding the tissue thickness compensator. In at least one embodiment, the vessel and the compensator body can be maintained in a collapsed state until staples are fired through the vessel. At such point, the vessel can re-expand and apply a biasing force to tissue captured within the staples.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Chester O. Baxter, III, Frederick E. Shelton, IV, Jeffrey S. Swayze, Taylor W. Aronhalt, Katherine J. Schmid
  • Publication number: 20240000491
    Abstract: A surgical kit includes a surgical instrument, a packaging, and a return packaging. The packaging defines an interior and an exterior in a closed configuration. The surgical instrument is disposed within the interior of the packaging or coupled with the packaging in the closed configuration. The packaging is configured to transition to an open configuration by a user to expose the interior and allow for access of the surgical instrument during a surgical procedure. The return packaging is configured to receive at least a portion of the surgical instrument after the surgical procedure for reduced cross-contamination. The return packaging is at least one of coupled with the packaging or disposed within the interior in the closed configuration.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Taylor W. Aronhalt, Cameron D. McLain, Nicholas J. Ross
  • Publication number: 20240001416
    Abstract: A method of determining a disposal methodology of a surgical kit includes determining a geographical location in which the surgical kit is being used, generating a location data based on the geographical location, and providing the location data set to a resource device. The method further includes receiving the disposal methodology from the resource device based on the location data set, then displaying a set of instruction based on the disposal methodology received from the resource device.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Matthew D. Cowperthwait, Shane R. Adams, Taylor W. Aronhalt, Joseph D. Paulowski, Cesar Perez
  • Patent number: 11857184
    Abstract: A surgical instrument comprising a rotatable and translatable firing member is disclosed.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: January 2, 2024
    Assignee: CILAG GMBH INTERNATIONAL
    Inventors: Frederick E. Shelton, IV, Chester O. Baxter, III, Taylor W. Aronhalt
  • Publication number: 20230404691
    Abstract: Systems, methods, and instrumentalities are described herein for autonomous operation of a surgical device within a predefined boundary. A discrete signal associated with clamping control (e.g., closure of a clamping jaw) may be received by the surgical device. The discrete signal may be triggered by a healthcare professional or autonomously activated. The surgical device, in response to the discrete signal and based on an algorithm, may generate a continuous signal to cause a continuous application of force or deployment of an operation. The surgical device, based at least on a measurement associated with one of tissue, inrush current, or the distance between the smart energy device and the smart grasper may determine a safety adjustment associated with the operation of the surgical device.
    Type: Application
    Filed: May 18, 2022
    Publication date: December 21, 2023
    Inventors: Frederick E. Shelton, IV, Kevin M. Fiebig, Charles J. Scheib, Shane R. Adams, Taylor W. Aronhalt, Aaron Chow, Curtis Anthony Maples, Nicholas James Ross, Matthew David Cowperthwait
  • Publication number: 20230380835
    Abstract: Implantable adjuncts for use with a surgical instrument are disclosed. The implantable adjunct includes a first mesh positioned about a first side of the longitudinal knife slot and a second mesh positioned about a second side of the longitudinal knife slot such that the first and second meshes define a gap substantially aligned with the longitudinal knife slot of the staple cartridge body.
    Type: Application
    Filed: June 2, 2023
    Publication date: November 30, 2023
    Inventors: Frederick E. Shelton, IV, Michael J. Vendely, Emily A. Schellin, Taylor W. Aronhalt, Trevor J. Barton, Lauren S. Weaner, Mark H. Ransick