Patents by Inventor Tenny Chang

Tenny Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9622748
    Abstract: A surgical tool for performing anastomosis may include a handle and a tissue effector connected by a shaft, at least party of which may be flexible. The tissue effector may include a staple holder connected to an anvil.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: April 18, 2017
    Assignee: DEXTERA SURGICAL INC.
    Inventors: David L. Bombard, Jaime S. Vargas, James T. Nielsen, Phillipe R. Manoux, Tenny Chang, Stephen A. Yencho, Bernard A. Hausen, Brendan M. Donohoe, Theodore M. Bender, Nathan H. White, Bryan D. Knodel
  • Patent number: 8801753
    Abstract: A surgical staple for connecting two tubular tissue structures may include a substantially rectangular base having a first edge and a second edge substantially parallel to one another, and a third edge substantially perpendicular to the first and said second edges; and may also include at least three deformable tines extending from the first and second edges of said base; where no tine that extends from the first edge may be positioned at substantially the same distance from the third edge as any said tine that extends from the second edge; and where deformation of the tines secures the tubular tissue structures together.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: August 12, 2014
    Assignee: Cardica, Inc.
    Inventors: Theodore M. Bender, David L. Bombard, Philipe R. Manoux, Tenny Chang, Jaime S. Vargas, Bryan D. Knodel
  • Patent number: 8475493
    Abstract: A surgical staple for connecting two tubular tissue structures may include a substantially rectangular base having a first edge and a second edge substantially parallel to one another, and a third edge substantially perpendicular to the first and said second edges; and may also include at least three deformable tines extending from the first and second edges of said base; where no tine that extends from the first edge may be positioned at substantially the same distance from the third edge as any said tine that extends from the second edge; and where deformation of the tines secures the tubular tissue structures together.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: July 2, 2013
    Assignee: Cardica, Inc.
    Inventors: Theodore M. Bender, David L. Bombard, Philipe R. Manoux, Tenny Chang, Jaime S. Vargas, Bryan D. Knodel
  • Publication number: 20120010463
    Abstract: A retractor and a surgical tool are posittioned within a cannula, and a dissection cradle of the retractor is positioned at the distal end of the cannula. The retractor includes a dissection cradle that is resiliently supported along an axis skewed relative to the axis of the cannula. The dissection cradle, in operation, is extended to cradle the target vessel, and the retractor may be fully extended to urge the vessel away from the axis of the cannula to isolate a side branch for exposure to a surgical tool. The retractor includes a hollow support and a spray nozzle disposed in the distal end of the retractor to form an irrigation system and lens washer that can be selectively positioned to direct the spray of irrigation fluid at a remote surgical site or at an endoscopic lens.
    Type: Application
    Filed: January 3, 2011
    Publication date: January 12, 2012
    Applicant: MAQUET CARDIOVASCULAR LLC
    Inventors: Albert K. Chin, John P. Lunsford, Tenny Chang, Jeffrey W. Baxter
  • Publication number: 20110101069
    Abstract: An exemplary surgical stapler may include a staple holder, staples positioned within the staple holder, and at least one structure slidable within the staple holder to contact directly at least one staple, where that direct contact deploys at least one staple from the staple holder. Another exemplary surgical stapler may include a staple holder, an anvil movably connected to the staple holder, staples positioned within the staple holder; and a sled slidable within the staple holder to contact directly at least one staple, where that direct contact urges at least one staple out of the staple holder and against the anvil.
    Type: Application
    Filed: December 16, 2010
    Publication date: May 5, 2011
    Applicant: CARDICA, INC.
    Inventors: David L. Bombard, Jaime S. Vargas, James T. Nielsen, Philipe R. Manoux, Tenny Chang, Stephen A. Yencho, Bernard A. Hausen, Brendan M. Donohoe, Theodore M. Bender, Nathan H. White, Bryan D. Knodel
  • Patent number: 7867163
    Abstract: A retractor and a surgical tool are positioned within a cannula, and a dissection cradle of the retractor is positioned at the distal end of the cannula. The retractor includes a dissection cradle that is resiliently supported along an axis skewed relative to the axis of the cannula. The dissection cradle, in operation, is extended to cradle the target vessel, and the retractor may be fully extended to urge the vessel away from the axis of the cannula to isolate a side branch for exposure to a surgical tool. The retractor includes a hollow support and a spray nozzle disposed in the distal end of the retractor to form an irrigation system and lens washer that can be selectively positioned to direct the spray of irrigation fluid at a remote surgical site or at an endoscopic lens.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: January 11, 2011
    Assignee: Maquet Cardiovascular LLC
    Inventors: Albert K. Chin, John P. Lunsford, Tenny Chang, Jeffrey W. Baxter
  • Patent number: 7794471
    Abstract: An integrated anastomosis tool may include an effector that both makes an opening in the wall of a target vessel and connects a graft vessel to the target vessel. The connection between the graft vessel and the target vessel may be compliant, and may be achieved by deploying a plurality of connectors such as staples into tissue. The effector may include a cutter assembly and a connection module that are independently actuatable. The cutter assembly and/or the connection module may be cable-actuated.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: September 14, 2010
    Assignee: Cardica, Inc.
    Inventors: Theodore M. Bender, Luke W. Clauson, Philipe R. Manoux, Zachary Warder-Gabaldon, Tenny Chang, Kathleen H. Davies, Stephen A. Yencho, Brian R. DuBois, Bernard A. Hausen, Bryan D. Knodel
  • Patent number: 7766924
    Abstract: An anastomosis tool includes a handle connected to a tissue effector that may be capable of being oriented in two or more positions relative to the handle. The tissue effector holds a graft vessel having at least one flap defined in at least one end thereof against the side of a target vessel. Actuation of a trigger or other mechanism on the handle causes the tissue effector to deploy one or more connectors into the flaps of the graft vessel and the side of the target vessel, thereby connecting the graft vessel to the target vessel.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: August 3, 2010
    Assignee: Cardica, Inc.
    Inventors: David L. Bombard, Jaime S. Vargas, James T. Nielsen, Philipe R. Manoux, Tenny Chang, Stephen A. Yencho, Bernard A. Hausen, Brendan M. Donohoe, Theodore M. Bender, Nathan H. White, Bryan D. Knodel
  • Patent number: 7699859
    Abstract: A method for anastomosing a first vessel to a second vessel may include connecting an end of the first vessel to the side of the second vessel and creating an opening in the wall of the second vessel from within the lumen of the second vessel, where that opening allows fluid communication between the lumen of the first vessel and the lumen of the second vessel.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: April 20, 2010
    Assignee: Cardica, Inc.
    Inventors: David L. Bombard, Jaime S. Vargas, James T. Nielsen, Philipe R. Manoux, Tenny Chang, Stephen A. Yencho, Bernard A. Hausen, Brendan M. Donohoe, Theodore M. Bender, Nathan H. White, Bryan D. Knodel
  • Publication number: 20090131747
    Abstract: A retractor and a surgical tool are positioned within a cannula, and a dissection cradle of the retractor is positioned at the distal end of the cannula. The retractor includes a dissection cradle that is resiliently supported along an axis skewed relative to the axis of the cannula. The dissection cradle, in operation, is extended to cradle the target vessel, and the retractor may be fully extended to urge the vessel away from the axis of the cannula to isolate a side branch for exposure to a surgical tool. The retractor includes a hollow support and a spray nozzle disposed in the distal end of the retractor to form an irrigation system and lens washer that can be selectively positioned to direct the spray of irrigation fluid at a remote surgical site or at an endoscopic lens.
    Type: Application
    Filed: December 12, 2008
    Publication date: May 21, 2009
    Applicant: Maquet Cardiovascular LLC
    Inventors: Albert K. Chin, John P. Lunsford, Tenny Chang, Jeffrey W. Baxter
  • Patent number: 7476198
    Abstract: A retractor and a surgical tool are positioned within a cannula, and a dissection cradle of the retractor is positioned at the distal end of the cannula. The retractor includes a dissection cradle that is resiliently supported along an axis skewed relative to the axis of the cannula. The dissection cradle, in operation, is extended to cradle the target vessel, and the retractor may be fully extended to urge the vessel away from the axis of the cannula to isolate a side branch for exposure to a surgical tool. The retractor includes a hollow support and a spray nozzle disposed in the distal end of the retractor to form an irrigation system and lens washer that can be selectively positioned to direct the spray of irrigation fluid at a remote surgical site or at an endoscopic lens.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: January 13, 2009
    Assignee: Maquet Cardiovascular, LLC
    Inventors: Albert K. Chin, John P. Lunsford, Tenny Chang, Jeffrey W. Baxter
  • Patent number: 7303570
    Abstract: An anastomosis tool may include a connector holder connected to an anvil. The connector holder may be bifurcated and configured to straddle the graft vessel. The connector holder may be generally U-shaped. The connector holder may be shaped to extend around more than half of the circumference of the graft vessel.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: December 4, 2007
    Assignee: Cardica, Inc.
    Inventors: David L. Bombard, Jaime S. Vargas, James T. Nielsen, Philipe R. Manoux, Tenny Chang, Stephen A. Yencho, Bernard A. Hausen, Brendan M. Donohoe, Theodore M. Bender, Nathan H. White, Bryan D. Knodel
  • Publication number: 20070233164
    Abstract: A surgical staple for connecting two tubular tissue structures may include a substantially rectangular base having a first edge and a second edge substantially parallel to one another, and a third edge substantially perpendicular to the first and said second edges; and may also include at least three deformable tines extending from the first and second edges of said base; where no tine that extends from the first edge may be positioned at substantially the same distance from the third edge as any said tine that extends from the second edge; and where deformation of the tines secures the tubular tissue structures together.
    Type: Application
    Filed: June 7, 2007
    Publication date: October 4, 2007
    Applicant: CARDICA, INC.
    Inventors: Theodore Bender, David Bombard, Philipe Manoux, Tenny Chang, Jaime Vargas, Bryan Knodel
  • Patent number: 7267682
    Abstract: An anastomosis staple has a base from which multiple deformable tines extend. At least one tine may be offset from at least one other tine. The tines are moveable from a first configuration to a second configuration. The staple optionally includes at least one alignment guide.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: September 11, 2007
    Assignee: Cardica, Inc.
    Inventors: Theodore M. Bender, David L. Bombard, Philipe R. Manoux, Tenny Chang, Jaime S. Vargas, Bryan D. Knodel
  • Publication number: 20060241660
    Abstract: A surgical tool for performing anastomosis may include a handle and a tissue effector connected by a shaft, at least party of which may be flexible. The tissue effector may include a staple holder connected to an anvil.
    Type: Application
    Filed: March 17, 2006
    Publication date: October 26, 2006
    Inventors: David Bombard, Jaime Vargas, James Nielsen, Philipe Manoux, Tenny Chang, Stephen Yencho, Bernard Hausen, Brendan Donohoe, Theodore Bender, Nathan White, Bryan Knodel
  • Publication number: 20060116699
    Abstract: A method and system for performing anastomosis may use an anvil to control and support a tissue site during an anastomosis procedure involving tissue bonding techniques such as adhesive tissue bonding. Adhesive may be applied to mating surfaces of the graft and/or target vessels either before or after the vessels are brought into contact. Adhesive may be applied via an applicator associated with the anvil.
    Type: Application
    Filed: January 13, 2006
    Publication date: June 1, 2006
    Inventors: David Bombard, Theodore Bender, Tenny Chang, Jaime Vargas, Michael Hendricksen, Stephen Yencho, Jamey Nielsen, Bernard Hausen, Brendan Donohoe
  • Patent number: 7041112
    Abstract: A method for tensioning incisions made in a target vessel during an anastomosis procedure is provided. After an incision is made in a target vessel, incision tensioners are placed within the incision in order to tension the incision. The incision is tensioned when the incision tensioners are pulled taut in order to stretch the incision to a predetermined length or a predetermined force. The tensioners allow for proper grafting of a graft vessel to the target vessel in an end to side anastomosis. In addition, the incision tensioners allow the incision to have a known geometry, thereby allowing precise grafting of the graft vessel to the target vessel during the anastomosis procedure. After the incision is tensioned, the graft vessel is grafted to the target vessel using clips, sutures, staples or other anastomosis devices. One example of anastomosis clips are configured to capture the graft vessel and the target vessel such that the graft vessel grafts with the target vessel.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: May 9, 2006
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Tenny Chang, David Bombard
  • Patent number: 7014644
    Abstract: A method and system for performing anastomosis uses an anvil to control and support a tissue site during an anastomosis procedure involving tissue bonding techniques such as tissue welding and adhesive tissue bonding. The anvil is particularly useful for supporting a wall of a coronary artery during attachment of a graft vessel in a coronary artery bypass graft procedure. The anvil is inserted into a pressurized or unpressurized target vessel and is pulled against an inner wall of the target vessel causing tenting of the thin tissue of the vessel wall. A graft vessel is then advanced to the anastomosis site and an end of the graft vessel is positioned adjacent an exterior of the target vessel. When tissue welding is used, a graft vessel fixture is positioned over the tissue surfaces to be welded in order to clamp the graft and target vessel tissue together. The tissue contacting surfaces of the anvil and/or graft vessel fixture are provided with one or more energy applying surfaces.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 21, 2006
    Assignee: Cardica, Inc.
    Inventors: David Bombard, Theodore Bender, Tenny Chang, Jaime Vargas, Michael Hendricksen, Stephen A. Yencho, Jamey Nielsen, Bernard A. Hausen, Brendan Donohoe
  • Patent number: 6976957
    Abstract: A retractor and a surgical tool are positioned within a cannula, and a dissection cradle of the retractor is positioned at the distal end of the cannula. The retractor includes a dissection cradle that is resiliently supported along an axis skewed relative to the axis of the cannula. The dissection cradle, in operation, is extended to cradle the target vessel, and the retractor may be fully extended to urge the vessel away from the axis of the cannula to isolate a side branch for exposure to a surgical tool. The retractor includes a hollow support and a spray nozzle disposed in the distal end of the retractor to form an irrigation system and lens washer that can be selectively positioned to direct the spray of irrigation fluid at a remote surgical site or at an endoscopic lens.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: December 20, 2005
    Assignee: Origin Medsystems, Inc.
    Inventors: Albert K. Chin, John P. Lunsford, Tenny Chang, Jeffrey W. Baxter
  • Publication number: 20050154406
    Abstract: A method for connecting a graft vessel to a target vessel, each vessel having a wall surrounding a lumen, may include providing a connector holder, associating an end of the graft vessel with the connector holder, positioning the connector holder outside of the lumen of the target vessel, outside the lumen of the graft vessel, and in proximity to the outer surface of the wall of the target vessel, and actuating the connector holder to secure the end of the graft vessel to the side of the target vessel.
    Type: Application
    Filed: November 12, 2004
    Publication date: July 14, 2005
    Inventors: David Bombard, Jaime Vargas, James Nielsen, Philipe Manoux, Tenny Chang, Stephen Yencho, Bernard Hausen, Brendan Donohoe, Theodore Bender, Nathan White, Bryan Knodel