Patents by Inventor Teodora Ossiander

Teodora Ossiander has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10157869
    Abstract: Embodiments of the present disclosure are directed towards a method of assembling an integrated circuit package. In embodiments the method may include providing a wafer having an unpatterned passivation layer to prevent corrosion of metal conductors embedded in the wafer. The method may further include laminating a dielectric material on the passivation layer to form a dielectric layer and selectively removing dielectric material to form voids in the dielectric layer. These voids may reveal portions of the passivation layer disposed over the metal conductors. The method may then involve removing the portions of the passivation layer to reveal the metal conductors. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: December 18, 2018
    Assignee: Intel Corporation
    Inventors: Thorsten Meyer, Gerald Ofner, Teodora Ossiander, Frank Zudock, Christian Geissler
  • Publication number: 20180150156
    Abstract: Some forms relate to wearable computing devices that include a “touch pad” like interface. In some forms, the example wearable computing devices may be integrated with (or attached to) textiles (i.e. clothing). In other forms, the example wearable computing devices may be attached directly to the skin of someone (i.e., similar to a bandage) that utilizes any of the example wearable computing devices. The example wearable computing devices include a flexible touch pad that may allow a user of the wearable computing device to more easily operate the wearable computing device. The example wearable computing devices described herein may include a variety of electronics. Some examples include a power supply and/or a communication device among other types of electronics.
    Type: Application
    Filed: January 25, 2018
    Publication date: May 31, 2018
    Inventors: Sven Albers, Klaus Reingruber, Teodora Ossiander, Andreas Wolter, Sonja Koller, Georg Seidemann, Jan Proschwitz, Hans-Joachim Barth, Bastiaan Elshof
  • Patent number: 9921694
    Abstract: Some forms relate to wearable computing devices that include a “touch pad” like interface. In some forms, the example wearable computing devices may be integrated with (or attached to) textiles (i.e. clothing). In other forms, the example wearable computing devices may be attached directly to the skin of someone (i.e., similar to a bandage) that utilizes any of the example wearable computing devices. The example wearable computing devices include a flexible touch pad that may allow a user of the wearable computing device to more easily operate the wearable computing device. The example wearable computing devices described herein may include a variety of electronics. Some examples include a power supply and/or a communication device among other types of electronics.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: March 20, 2018
    Assignee: Intel Corporation
    Inventors: Sven Albers, Klaus Reingruber, Teodora Ossiander, Andreas Wolter, Sonja Koller, Georg Seidemann, Jan Proschwitz, Hans-Joachim Barth, Bastiaan Elshof
  • Publication number: 20170103956
    Abstract: Embodiments of the present disclosure are directed towards a method of assembling an integrated circuit package. In embodiments the method may include providing a wafer having an unpatterned passivation layer to prevent corrosion of metal conductors embedded in the wafer. The method may further include laminating a dielectric material on the passivation layer to form a dielectric layer and selectively removing dielectric material to form voids in the dielectric layer. These voids may reveal portions of the passivation layer disposed over the metal conductors. The method may then involve removing the portions of the passivation layer to reveal the metal conductors. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 13, 2017
    Inventors: Thorsten Meyer, Gerald Ofner, Teodora Ossiander, Frank Zudock, Christian Geissler
  • Patent number: 9601468
    Abstract: Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with magnetic contacts, as well as corresponding fabrication methods and systems incorporating such magnetic contacts. A first IC substrate may have a first magnet coupled with a first electrical routing feature. A second IC substrate may have a second magnet coupled with a second electrical routing feature. The magnets may be embedded in the IC substrates and/or electrical routing features. The magnets may generate a magnetic field that extends across a gap between the first and second electrical routing features. Electrically conductive magnetic particles may be applied to one or both of the IC substrates to form a magnetic interconnect structure that extends across the gap. In some embodiments, magnetic contacts may be demagnetized by heating the magnets to a corresponding partial demagnetization temperature (PDT) or Curie temperature. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: March 21, 2017
    Assignee: Intel Corporation
    Inventors: Michael P. Skinner, Teodora Ossiander, Sven Albers, Georg Seidemann
  • Patent number: 9472515
    Abstract: Embodiments of the present disclosure are directed towards a method of assembling an integrated circuit package. In embodiments the method may include providing a wafer having an unpatterned passivation layer to prevent corrosion of metal conductors embedded in the wafer. The method may further include laminating a dielectric material on the passivation layer to form a dielectric layer and selectively removing dielectric material to form voids in the dielectric layer. These voids may reveal portions of the passivation layer disposed over the metal conductors. The method may then involve removing the portions of the passivation layer to reveal the metal conductors. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: October 18, 2016
    Assignee: INTEL CORPORATION
    Inventors: Thorsten Meyer, Gerald Ofner, Teodora Ossiander, Frank Zudock, Christian Geissler
  • Publication number: 20160247785
    Abstract: Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with magnetic contacts, as well as corresponding fabrication methods and systems incorporating such magnetic contacts. A first IC substrate may have a first magnet coupled with a first electrical routing feature. A second IC substrate may have a second magnet coupled with a second electrical routing feature. The magnets may be embedded in the IC substrates and/or electrical routing features. The magnets may generate a magnetic field that extends across a gap between the first and second electrical routing features. Electrically conductive magnetic particles may be applied to one or both of the IC substrates to form a magnetic interconnect structure that extends across the gap. In some embodiments, magnetic contacts may be demagnetized by heating the magnets to a corresponding partial demagnetization temperature (PDT) or Curie temperature. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: May 4, 2016
    Publication date: August 25, 2016
    Inventors: Michael P. Skinner, Teodora Ossiander, Sven Albers, Georg Seidemann
  • Publication number: 20160224148
    Abstract: Some forms relate to wearable computing devices that include a “touch pad” like interface. In some forms, the example wearable computing devices may be integrated with (or attached to) textiles (i.e. clothing). In other forms, the example wearable computing devices may be attached directly to the skin of someone (i.e., similar to a bandage) that utilizes any of the example wearable computing devices. The example wearable computing devices include a flexible touch pad that may allow a user of the wearable computing device to more easily operate the wearable computing device. The example wearable computing devices described herein may include a variety of electronics. Some examples include a power supply and/or a communication device among other types of electronics.
    Type: Application
    Filed: December 16, 2014
    Publication date: August 4, 2016
    Inventors: Sven ALBERS, Klaus Reingruber, Teodora Ossiander, Andreas Wolter, Sonja Koller, Georg Seidemann, Jan Proschwitz, Hans-Joachim Barth, Bastiaan Elshof
  • Patent number: 9343389
    Abstract: Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with magnetic contacts, as well as corresponding fabrication methods and systems incorporating such magnetic contacts. A first IC substrate may have a first magnet coupled with a first electrical routing feature. A second IC substrate may have a second magnet coupled with a second electrical routing feature. The magnets may be embedded in the IC substrates and/or electrical routing features. The magnets may generate a magnetic field that extends across a gap between the first and second electrical routing features. Electrically conductive magnetic particles may be applied to one or both of the IC substrates to form a magnetic interconnect structure that extends across the gap. In some embodiments, magnetic contacts may be demagnetized by heating the magnets to a corresponding partial demagnetization temperature (PDT) or Curie temperature. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: May 17, 2016
    Assignee: Intel Corporation
    Inventors: Michael P. Skinner, Teodora Ossiander, Sven Albers, Georg Seidemann
  • Publication number: 20150357311
    Abstract: Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with magnetic contacts, as well as corresponding fabrication methods and systems incorporating such magnetic contacts. A first IC substrate may have a first magnet coupled with a first electrical routing feature. A second IC substrate may have a second magnet coupled with a second electrical routing feature. The magnets may be embedded in the IC substrates and/or electrical routing features. The magnets may generate a magnetic field that extends across a gap between the first and second electrical routing features. Electrically conductive magnetic particles may be applied to one or both of the IC substrates to form a magnetic interconnect structure that extends across the gap. In some embodiments, magnetic contacts may be demagnetized by heating the magnets to a corresponding partial demagnetization temperature (PDT) or Curie temperature. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: August 14, 2015
    Publication date: December 10, 2015
    Inventors: Michael P. Skinner, Teodora Ossiander, Sven Albers, Georg Seidemann
  • Patent number: 9209143
    Abstract: An apparatus comprises a first integrated circuit (IC) die that includes a top layer, a bottom surface, a sidewall surface extending from a top surface of the top layer to the bottom surface, and at least one multi-surface contact pad, a second IC die including a top layer, a bottom surface, a sidewall surface extending from a top surface of the top layer to the bottom surface, and at least one multi-surface contact pad, wherein the second IC die is arranged adjacent to the first IC die, and includes an electrically conductive bond in contact with at least one of the top surface or the side surface of the multi-surface contact pad of the first IC die and the top surface of the multi-surface contact pad of the second IC die.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: December 8, 2015
    Assignee: Intel IP Corporation
    Inventors: Georg Seidemann, Sven Albers, Teodora Ossiander, Michael Skinner, Hans-Joachim Barth, Harald Gossner, Reinhard Mahnkopf, Christian Mueller, Wolfgang Molzer
  • Patent number: 9142475
    Abstract: Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with magnetic contacts, as well as corresponding fabrication methods and systems incorporating such magnetic contacts. A first IC substrate may have a first magnet coupled with a first electrical routing feature. A second IC substrate may have a second magnet coupled with a second electrical routing feature. The magnets may be embedded in the IC substrates and/or electrical routing features. The magnets may generate a magnetic field that extends across a gap between the first and second electrical routing features. Electrically conductive magnetic particles may be applied to one or both of the IC substrates to form a magnetic interconnect structure that extends across the gap. In some embodiments, magnetic contacts may be demagnetized by heating the magnets to a corresponding partial demagnetization temperature (PDT) or Curie temperature. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: September 22, 2015
    Assignee: Intel Corporation
    Inventors: Michael P. Skinner, Teodora Ossiander, Sven Albers, Georg Seidemann
  • Publication number: 20150262866
    Abstract: Embodiments of the present disclosure are directed towards a method of assembling an integrated circuit package. In embodiments the method may include providing a wafer having an unpatterned passivation layer to prevent corrosion of metal conductors embedded in the wafer. The method may further include laminating a dielectric material on the passivation layer to form a dielectric layer and selectively removing dielectric material to form voids in the dielectric layer. These voids may reveal portions of the passivation layer disposed over the metal conductors. The method may then involve removing the portions of the passivation layer to reveal the metal conductors. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 17, 2015
    Inventors: Thorsten Meyer, Gerald Ofner, Teodora Ossiander, Frank Zudock, Christian Geissler
  • Publication number: 20150084202
    Abstract: An apparatus comprises a first integrated circuit (IC) die that includes a top layer, a bottom surface, a sidewall surface extending from a top surface of the top layer to the bottom surface, and at least one multi-surface contact pad, a second IC die including a top layer, a bottom surface, a sidewall surface extending from a top surface of the top layer to the bottom surface, and at least one multi-surface contact pad, wherein the second IC die is arranged adjacent to the first IC die, and includes an electrically conductive bond in contact with at least one of the top surface or the side surface of the multi-surface contact pad of the first IC die and the top surface of the multi-surface contact pad of the second IC die.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Inventors: Georg Seidemann, Sven Albers, Teodora Ossiander, Michael Skinner, Hans-Joachim Barth, Harald Gossner, Reinhard Mahnkoph, Christian Mueller, Wolfgang Molzer
  • Publication number: 20150048520
    Abstract: Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with magnetic contacts, as well as corresponding fabrication methods and systems incorporating such magnetic contacts. A first IC substrate may have a first magnet coupled with a first electrical routing feature. A second IC substrate may have a second magnet coupled with a second electrical routing feature. The magnets may be embedded in the IC substrates and/or electrical routing features. The magnets may generate a magnetic field that extends across a gap between the first and second electrical routing features. Electrically conductive magnetic particles may be applied to one or both of the IC substrates to form a magnetic interconnect structure that extends across the gap. In some embodiments, magnetic contacts may be demagnetized by heating the magnets to a corresponding partial demagnetization temperature (PDT) or Curie temperature. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 19, 2015
    Inventors: Michael P. Skinner, Teodora Ossiander, Sven Albers, Georg Seidemann