Patents by Inventor Teresa Fernandez-Alnemri

Teresa Fernandez-Alnemri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040236081
    Abstract: The invention relates to an isolated nucleic acid molecule encoding a caspase-14 polypeptide or functional fragment thereof, a vector that contains the nucleic acid molecule and a host cell that contains the vector. The invention also relates to an isolated gene encoding caspase-14, as well as functional fragments thereof. The gene or nucleic acid molecule can include single or double stranded nucleic acids corresponding to coding or non-coding strands of the caspase-14 nucleotide sequence. Isolated caspase-14 polypeptides or functional fragments thereof are also provided, as are antibodies that specifically bind thereto. In addition, the invention relates to methods of identifying compounds that modulate caspase-14 activity.
    Type: Application
    Filed: June 17, 2004
    Publication date: November 25, 2004
    Applicant: Thomas Jefferson University
    Inventors: Emad S. Alnemri, Teresa Fernandez-Alnemri
  • Patent number: 6797812
    Abstract: The invention relates to an isolated nucleic acid molecule encoding a caspase-14 polypeptide or functional fragment thereof, a vector that contains the nucleic acid molecule and a host cell that contains the vector. The invention also relates to an isolated gene encoding caspase-14, as well as functional fragments thereof. The gene or nucleic acid molecule can include single or double stranded nucleic acids corresponding to coding or non-coding strands of the caspase-14 nucleotide sequence. Isolated caspase-14 polypeptides or functional fragments thereof are also provided, as are antibodies that specifically bind thereto. In addition, the invention relates to methods of identifying compounds that modulate caspase-14 activity.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: September 28, 2004
    Assignee: Thomas Jefferson University
    Inventors: Emad S. Alnemri, Teresa Fernandez-Alnemri
  • Publication number: 20030040096
    Abstract: The invention relates to an isolated nucleic acid molecule encoding a caspase-14 polypeptide or functional fragment thereof, a vector that contains the nucleic acid molecule and a host cell that contains the vector. The invention also relates to an isolated gene encoding caspase-14, as well as functional fragments thereof. The gene or nucleic acid molecule can include single or double stranded nucleic acids corresponding to coding or non-coding strands of the caspase-14 nucleotide sequence. Isolated caspase-14 polypeptides or functional fragments thereof are also provided, as are antibodies that specifically bind thereto. In addition, the invention relates to methods of identifying compounds that modulate caspase-14 activity.
    Type: Application
    Filed: February 5, 2002
    Publication date: February 27, 2003
    Applicant: Thomas Jefferson University
    Inventors: Emad S. Alnemri, Teresa Fernandez-Alnemri
  • Publication number: 20020146804
    Abstract: The invention relates to an isolated nucleic acid molecule encoding a caspase-14 polypeptide or functional fragment thereof, a vector that contains the nucleic acid molecule and a host cell that contains the vector. The invention also relates to an isolated gene encoding caspase-14, as well as functional fragments thereof. The gene or nucleic acid molecule can include single or double stranded nucleic acids corresponding to coding or non-coding strands of the caspase-14 nucleotide sequence. Isolated caspase-14 polypeptides or functional fragments thereof are also provided, as are antibodies that specifically bind thereto. In addition, the invention relates to methods of identifying compounds that modulate caspase-14 activity.
    Type: Application
    Filed: November 20, 2001
    Publication date: October 10, 2002
    Applicant: Thomas Jefferson University
    Inventors: Emad S. Alnemri, Teresa Fernandez-Alnemri
  • Patent number: 6432628
    Abstract: The invention relates to an isolated nucleic acid molecule encoding a caspase-14 polypeptide or functional fragment thereof, a vector that contains the nucleic acid molecule and a host cell that contains the vector. The invention also relates to an isolated gene encoding caspase-14, as well as functional fragments thereof. The gene or nucleic acid molecule can include single or double stranded nucleic acids corresponding to coding or non-coding strands of the caspase-14 nucleotide sequence. Isolated caspase-14 polypeptides or functional fragments thereof are also provided, as are antibodies that specifically bind thereto. In addition, the invention relates to methods of identifying compounds that modulate caspase-14 activity.
    Type: Grant
    Filed: August 25, 1998
    Date of Patent: August 13, 2002
    Assignee: Thomas Jefferson University
    Inventors: Emad S. Alnemri, Teresa Fernandez-Alnemri
  • Patent number: 6407215
    Abstract: A substantially pure protein that is a member of the apoptotic Ced-3/Ice cysteine protease gene family, Mch2&agr;, and an inactive isoform of it, Mch2&bgr;, are disclosed. Isolated nucleic acid molecules that encode Mch2&agr; and Mch2&bgr;, respectively, are disclosed. Pharmaceutical compositions comprising a pharmaceutically acceptable carrier in combination with the protein or the nucleic acid molecules are disclosed. Fragments of nucleic acid molecules that encode Mch2&agr; and Mch2&bgr; having at least 10 nucleotides and oligonucleotide molecule comprising a nucleotide sequence complimentary to a nucleotide sequence of at least 10 nucleotides are disclosed. Recombinant expression vectors that comprise the nucleic acid molecule that encode Mch2&agr; or Mch2&bgr;, and host cells that comprise such recombinant vectors are disclosed. Antibodies that bind to an epitope on Mch2&agr; and/or Mch2&bgr; are disclosed. Methods of identifying inhibitors, activators and substrates of Mch2&agr; are disclosed.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: June 18, 2002
    Assignee: Thomas Jefferson University
    Inventors: Gerald Litwack, Emad S. Alnemri, Teresa Fernandez-Alnemri
  • Patent number: 6359127
    Abstract: A substantially pure protein that is a member of the apoptotic Ced-3/Ice cysteine protease gene family, Mch2&agr;, and an inactive isoform of it, Mch2&bgr;, are disclosed. Isolated nucleic acid molecules that encode Mch2&agr; and Mch2&bgr;, respectively, are disclosed. Pharmaceutical compositions comprising a pharmaceutically acceptable carrier in combination with the protein or the nucleic acid molecules are disclosed. Fragments of nucleic acid molecules that encode Mch2&agr; and Mch2&bgr; having at least 10 nucleotides and oligonucleotide molecule comprising a nucleotide sequence complimentary to a nucleotide sequence of at least 10 nucleotides are disclosed. Recombinant expression vectors that comprise the nucleic acid molecule that encode Mch2&agr; or Mch2&bgr;, and host cells that comprise such recombinant vectors are disclosed. Antibodies that bind to an epitope on Mch2&agr; and/or Mch2&bgr; are disclosed. Methods of identifying inhibitors, activators and substrates of Mch2&agr; are disclosed.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: March 19, 2002
    Assignee: Thomas Jefferson University
    Inventors: Gerald Litwack, Emad S. Alnemri, Teresa Fernandez-Alnemri
  • Patent number: 6340740
    Abstract: The invention relates to an isolated nucleic acid molecule encoding a caspase-14 polypeptide or functional fragment thereof, a vector that contains the nucleic acid molecule and a host cell that contains the vector. The invention also relates to an isolated gene encoding caspase-14, as well as functional fragments thereof. The gene or nucleic acid molecule can include single or double stranded nucleic acids corresponding to coding or non-coding strands of the caspase-14 nucleotide sequence. Isolated caspase-14 polypeptides or functional fragments thereof are also provided, as are antibodies that specifically bind thereto. In addition, the invention relates to methods of identifying compounds that modulate caspase-14 activity.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: January 22, 2002
    Assignee: THomas Jefferson University
    Inventors: Emad S. Alnemri, Teresa Fernandez-Alnemri
  • Patent number: 5985640
    Abstract: A substantially pure protein that is a member of the apoptotic Ced-3/Ice cysteine protease gene family, Mch2.alpha., and an inactive isoform of it, Mch2.beta., are disclosed. Isolated nucleic acid molecules that encode Mch2.alpha. and Mch2.beta., respectively, are disclosed. Pharmaceutical compositions comprising a pharmaceutically acceptable carrier in combination with the protein or the nucleic acid molecules are disclosed. Fragments of nucleic acid molecules that encode Mch2.alpha. and Mch2.beta. having at least 10 nucleotides and oligonucleotide molecule comprising a nucleotide sequence complimentary to a nucleotide sequence of at least 10 nucleotides are disclosed. Recombinant expression vectors that comprise the nucleic acid molecule that encode Mch2.alpha. or Mch2.beta., and host cells that comprise such recombinant vectors are disclosed. Antibodies that bind to an epitope on Mch2.alpha. and/or Mch2.beta. are disclosed. Methods of identifying inhibitors, activators and substrates of Mch2.alpha.
    Type: Grant
    Filed: July 18, 1997
    Date of Patent: November 16, 1999
    Assignee: Thomas Jefferson University
    Inventors: Gerald Litwack, Emad S. Alnemri, Teresa Fernandez-Alnemri
  • Patent number: 5958720
    Abstract: A substantially pure protein that is a member of the apoptotic Ced-3/Ice cysteine protease gene family, Mch2.alpha., and an inactive isoform of it, Mch2.beta., are disclosed. Isolated nucleic acid molecules that encode Mch2.alpha. and Mch2.beta., respectively, are disclosed. Pharmaceutical compositions comprising a pharmaceutically acceptable carrier in combination with the protein or the nucleic acid molecules are disclosed. Fragments of nucleic acid molecules that encode Mch2.alpha. and Mch2.beta. having at least 10 nucleotides and oligonucleotide molecule comprising a nucleotide sequence complimentary to a nucleotide sequence of at least 10 nucleotides are disclosed. Recombinant expression vectors that comprise the nucleic acid molecule that encode Mch2.alpha. or Mch2.beta., and host cells that comprise such recombinant vectors are disclosed. Antibodies that bind to an epitope on Mch2.alpha. and/or Mch2.beta. are disclosed. Methods of identifying inhibitors, activators and substrates of Mch2.alpha.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: September 28, 1999
    Assignee: Thomas Jefferson University
    Inventors: Gerald Litwack, Emad S. Alnemri, Teresa Fernandez-Alnemri
  • Patent number: 5856169
    Abstract: Substantially pure interleukin-1 converting enzyme isoforms are disclosed. Pharmaceutical compositions comprising one or more interleukin-1 converting enzyme isoforms are disclosed. Nucleic acid molecules that encode interleukin-1 converting enzyme isoforms, recombinant expression vectors that comprise a nucleic acid sequence that encodes an interleukin-1 converting enzyme isoform, and host cells that comprise recombinant expression vectors that comprise nucleic acid sequences that encode interleukin-1 converting enzyme isoforms are disclosed. Fragments of nucleic acid molecules with sequences encoding interleukin-1 converting enzyme isoform and oligonucleotide molecules that comprise a nucleotide sequence complimentary to fragment of a nucleotide sequence that encodes an interleukin-1 converting enzyme isoform are disclosed. Antibodies which bind to an epitope on interleukin-1 converting enzyme isoforms are disclosed. Methods of identifying inhibitors of ICE isoforms are disclosed.
    Type: Grant
    Filed: February 21, 1995
    Date of Patent: January 5, 1999
    Assignee: Thomas Jefferson University
    Inventors: Gerald Litwack, Emad S. Alnemri, Teresa Fernandez-Alnemri
  • Patent number: 5672500
    Abstract: A substantially pure protein that is a member of the apoptotic Ced-3/Ice cysteine protease gene family, Mch2.alpha., and an inactive isoform of it, Mch2.beta., are disclosed. Isolated nucleic acid molecules that encode Mch2.alpha. and Mch2.beta., respectively, are disclosed. Pharmaceutical compositions comprising a pharmaceutically acceptable carrier in combination with the protein or the nucleic acid molecules are disclosed. Fragments of nucleic acid molecules that encode Mch2.alpha. and Mch2.beta. having at least 10 nucleotides and oligonucleotide molecule comprising a nucleotide sequence complimentary to a nucleotide sequence of at least 10 nucleotides are disclosed. Recombinant expression vectors that comprise the nucleic acid molecule that encode Mch2.alpha. or Mch2.beta., and host cells that comprise such recombinant vectors are disclosed. Antibodies that bind to an epitope on Mch2.alpha. and/or Mch2.beta. are disclosed. Methods of identifying inhibitors, activators and substrates of Mch2.alpha.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: September 30, 1997
    Assignee: Thomas Jefferson University
    Inventors: Gerald Litwack, Emad S. Alnemri, Teresa Fernandez-Alnemri