Patents by Inventor Terry L. Dickey

Terry L. Dickey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973509
    Abstract: A phase-locked loop (PLL) that provides a local oscillator signal for a radio. An oscillator of the PLL supplies an oscillator output signal. Control logic receives a request to change the oscillator output signal to a new frequency and responds to the request by setting a first capacitor circuit of the oscillator to a first capacitance that corresponds to a predetermined frequency of the oscillator output signal. The control logic also responds to the request by setting one or more other capacitor circuits of the oscillator according to temperature and according to a frequency difference between the predetermined frequency and the new frequency. After responding to the request by setting the first capacitor circuit and the one or more other capacitor circuits, the PLL locks to the new frequency using a signal from the PLL loop filter to adjust another capacitor circuit in the oscillator.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: April 30, 2024
    Assignee: Silicon Laboratories Inc.
    Inventors: Rangakrishnan Srinivasan, Zhongda Wang, Francesco Barale, Wenhuan Yu, Mustafa H. Koroglu, Yan Zhou, Terry L. Dickey
  • Publication number: 20230371067
    Abstract: A wireless communication device has a receiver to listen to a sequence of channels. A controller responds to a preamble being detected on a first channel while the receiver is tuned to the first channel by causing the receiver to stay on the first channel and decode packet(s) associated with the preamble. The controller responds to detection of a first symbol of a first transmission protocol and the preamble not being detected to cause the receiver to stay on the first channel for a predetermined time waiting for a retry. The controller responds to detection of a second symbol of a second transmission protocol and the preamble not being detected to cause the receiver to switch to an advertising channel of the second transmission protocol. If no preambles, noise, or symbols are detected, the receiver switches to listening to a next channel in the sequence after a fixed time.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Inventors: Terry L. Dickey, Yan Zhou, Wentao Li, Rangakrishnan Srinivasan
  • Publication number: 20230318609
    Abstract: A phase-locked loop (PLL) that provides a local oscillator signal for a radio. An oscillator of the PLL supplies an oscillator output signal. Control logic receives a request to change the oscillator output signal to a new frequency and responds to the request by setting a first capacitor circuit of the oscillator to a first capacitance that corresponds to a predetermined frequency of the oscillator output signal. The control logic also responds to the request by setting one or more other capacitor circuits of the oscillator according to temperature and according to a frequency difference between the predetermined frequency and the new frequency. After responding to the request by setting the first capacitor circuit and the one or more other capacitor circuits, the PLL locks to the new frequency using a signal from the PLL loop filter to adjust another capacitor circuit in the oscillator.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Rangakrishnan Srinivasan, Zhongda Wang, Francesco Barale, Wenhuan Yu, Mustafa H. Koroglu, Yan Zhou, Terry L. Dickey
  • Patent number: 11777548
    Abstract: A receiver concurrently demodulates data transmitted with a plurality of protocols. The receiver utilizes multiple and simultaneous protocol detections at preamble and/or packet payload phases. To provide robust detection and achieve fewer false detections, the receiver extends the cross correlation length once a short cross-correlation is valid. The receiver includes a first demodulator path and a second demodulator path with different filter bandwidths. The second demodulator path includes a decimator that reduces data by two. A correlator bank is coupled to the first and second demodulator paths and concurrently detects preamble symbols associated with a plurality of protocols. A first noise detector is coupled to the first demodulator path and a second noise detector is coupled to the second demodulator path. A first symbol identifier circuit is coupled to the first demodulator path and a second symbol identifier circuit coupled to the second demodulator path to provide packet payload symbol detection.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: October 3, 2023
    Assignee: Silicon Laboratories Inc.
    Inventors: Wentao Li, Yan Zhou, Terry L. Dickey
  • Patent number: 6844934
    Abstract: An apparatus for measuring tubidity of a liquid has a tubular lens of transparent material with an aperture for receiving the liquid. First and second first light emitters are positioned adjacent the tubular lens to produce two beams of light each diverging at a predefined angle and impinging the tubular lens. The tubular lens refracts the diverging beams of light from the two light emitters into separate collimated beams within the aperture. A first light detector positioned adjacent the tubular lens diametrically opposite to the first light emitter and a second light detector positioned diametrically opposite to the first light emitter and a second light detector positioned diametrically opposite to the second light emitter. Each light detector produces a signal indicating an intensity of light received from within the tubular lens and the signals are process to derive a turbidity measurement.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: January 18, 2005
    Assignee: Hach Company
    Inventors: Gregory S. Retzlaff, John R. Woodward, Terry L. Dickey, Karl King
  • Publication number: 20040145742
    Abstract: An apparatus for measuring tubidity of a liquid has a tubular lens of transparent material with an aperture for receiving the liquid. First and second first light emitters are positioned adjacent the tubular lens to produce two beams of light each diverging at a predefined angle and impinging the tubular lens. The tubular lens refracts the diverging beams of light from the two light emitters into separate collimated beams within the aperture. A first light detector positioned adjacent the tubular lens diametrically opposite to the first light emitter and a second light detector positioned diametrically opposite to the first light emitter and a second light detector positioned diametrically opposite to the second light emitter. Each light detector produces a signal indicating an intensity of light received from within the tubular lens and the signals are process to derive a turbidity measurement.
    Type: Application
    Filed: November 20, 2003
    Publication date: July 29, 2004
    Inventors: Gregory S Retzlaff, John R Woodward, Terry L Dickey, Karl King