Patents by Inventor Terry M. Sanderson

Terry M. Sanderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8387536
    Abstract: A kinetic anti-projectile vehicle includes a body, and extendible arms that extend radially from the body. The arms include a foam material, such as a shape memory foam. The foam material may be heated to expand it. The foam arms may be mechanically restrained while being heated. The mechanically restraint may be removed by heating, for example including a fusible link or a shape memory sold material. The foam material arms may include solid material, either in the form of solid material particles, such as high strength particles, or in the form of supports or restraints in the foam material. The extension of the foam arms increases the effective area of the vehicle for impacting a projectile. Impact on the projectile from the body and/or one or more of the arms may be sufficient to destroy, divert, or otherwise disable the projectile.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: March 5, 2013
    Assignee: Raytheon Company
    Inventors: David R. Sar, Terry M. Sanderson, Philip C. Theriault
  • Patent number: 8382042
    Abstract: A structure includes a polymer structural member, which may include a shape memory polymer material, that can change its size and/or shape. An electromagnetic source is used to impose an electric field or a magnetic field on the polymer structural material, in order to control the shape of the material. The force may be used to change the shape of the material and/or to maintain the shape of the material while it is under load. The polymer material may be a solid material, may be a foam, and/or may include a gel. A shape memory polymer material may have mixed in it particles that are acted upon by the electromagnetic field. The structure may be used in any of a variety of devices where shape change (morphing), especially under loading, is desired.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: February 26, 2013
    Assignee: Raytheon Company
    Inventors: Terry M. Sanderson, Yvonne C. Levenson, David R. Sar
  • Patent number: 8342457
    Abstract: A shape-changing structural member has a shape-changing material, such as a suitable foam material, for example a polymer foam capable of withstanding at least 300% strain or a metal alloy foam capable of withstanding at least 5% strain. Springs, such as one or more coil springs, provide structural support for the shape-changing material. The springs may also be used to provide forces to expand and contract the shape change material. The springs may include pairs of concentric springs, one inside of another. The concentric springs may surround an underlying skeleton structure that supports the shape-changing material and/or aids in changing the shape of the material. The concentric springs may or may not be wrapped around the underlying skeleton structure. Multiple springs or pairs of springs may be coupled together using a sheet metal connector.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: January 1, 2013
    Assignee: Raytheon Company
    Inventors: David R. Sar, Terry M. Sanderson
  • Patent number: 8324563
    Abstract: A container includes a housing and a cover which may be wholly or partially removed to open the container. A foil seal is used to seal the joint between the housing and the cover. The foil seal is internal to the container. The foil seal separates during opening of the cover, respective parts of the foil seal remaining with the housing and the cover. The foil seal may be a metal or metal-containing foil, for example being an aluminum, steel, or titanium foil, or a metalized plastic foil. A cutter, such as a serrated edge, may be positioned to facilitate cutting of the foil seal during cover opening. The container may be part of a seeker assembly with the housing being a seeker housing, and the cover being a removable or hinged cover that protects an optical seeker during some portions of flight, such as during launch of a spacecraft.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: December 4, 2012
    Assignee: Raytheon Company
    Inventors: Michael J. Broyles, Terry M. Sanderson, Douglas M. Beard, Brian D. Alfing
  • Patent number: 8262032
    Abstract: A wing, such as a wing for an unmanned aerial vehicle (UAV), includes a beam or box that can be selectively expanded from a collapsed condition, to increase the thickness of the wing. The beam may include a pair of plates that are close together when the beam is in a collapsed condition, and separate from one another to put the beam in an expanded condition. The plates may be substantially parallel to each other, and may have shape memory foam and/or resilient devices, such as coil springs, between them, in order to provide a force to separate the plates before, during, and/or after deployment of the wing. The expandable/collapsible beam may have a lock mechanism to lock it into place when the beam is in an expanded condition.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: September 11, 2012
    Assignee: Raytheon Company
    Inventors: Terry M. Sanderson, David R. Sar
  • Publication number: 20120180691
    Abstract: A kinetic anti-projectile vehicle includes a body, and extendible arms that extend radially from the body. The arms include a foam material, such as a shape memory foam. The foam material may be heated to expand it. The foam arms may be mechanically restrained while being heated. The mechanically restraint may be removed by heating, for example including a fusible link or a shape memory sold material. The foam material arms may include solid material, either in the form of solid material particles, such as high strength particles, or in the form of supports or restraints in the foam material. The extension of the foam arms increases the effective area of the vehicle for impacting a projectile. Impact on the projectile from the body and/or one or more of the arms may be sufficient to destroy, divert, or otherwise disable the projectile.
    Type: Application
    Filed: December 4, 2008
    Publication date: July 19, 2012
    Inventors: David R. Sar, Terry M. Sanderson, Philip C. Theriault
  • Publication number: 20120061196
    Abstract: A structural member includes a box structure that encloses a beam, which may be a split beam or a split segmented beam. The structural member includes a pressure mechanism that varies a pressure force or a friction force between the beam and the box structure. Movement of the parts within the box structure, against the force of the pressure mechanism, as the structural member flexes, dissipates energy and adds to the damping of the structural member.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 15, 2012
    Inventors: David R. Sar, Terry M. Sanderson
  • Publication number: 20120061888
    Abstract: A structural member includes a split beam within a box structure. The split beam may be a segmented beam that includes multiple segments for each of its parts. Movement of the split beam parts within the box structure, as the structural member flexes, dissipates energy and adds to the damping of the structural member.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 15, 2012
    Inventors: David R. Sar, Terry M. Sanderson
  • Patent number: 8104713
    Abstract: A reinforced inflatable wing improves the tolerance of the OML and reinforces the wing in at least the high load areas. This approach provides fitment constrained air vehicles with wings having increased surface area to improve flight endurance or aerodynamic control. A wing box forms a first portion of the wing. A skin having a plurality of rigid plates affixed thereto is inflated to form a second portion of the wing to either increase the chord length or lengthen the wing span. The skin is suitably inflated with foam to form a solid wing.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: January 31, 2012
    Assignee: Raytheon Company
    Inventors: Terry M. Sanderson, Rudy A. Eisentraut, David B. Hatfield
  • Patent number: 8056853
    Abstract: A reconfigurable air vehicle wing may be selectively reconfigured to increase its chord. The wing has a leading edge portion and a trailing edge portion that are moved relative to one another to change the chord of the wing. The wing may be reconfigured from a compact configuration with a smaller chord, to and expanded configuration with a larger chord. The wing may include a foam material that forms part of the outer surface of the wing when the wing is in the expanded configuration. The foam may be a shape memory foam. Alternatively the leading edge section and the trailing edge section may be composed substantially fully of rigid materials. In either case the trailing edge section may be hingedly coupled to the leading edge section.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: November 15, 2011
    Assignee: Raytheon Company
    Inventors: Rudy A. Eisentraut, Terry M. Sanderson, Brian J. Gowler
  • Patent number: 8058595
    Abstract: A nose cone formed from a shape memory alloy (SMA) having a recoverable strain of at least 2% collapses about the dome for storage, deploys at launch to protect the sensor dome and reduce drag during atmospheric flight and is shed to allow sensing for terminal maneuvers. The SMA is shape-set at elevated temperatures in its Austenite phase with a memorized shape having a radius of curvature greater than that of the sensor dome to reduce aerodynamic drag. The temperature is reduced and the SMA collapsed to conform to the curvature of the sensor dome within the recoverable strain for storage. A first mechanism is configured to return the collapsed SMA to its memorized shape at launch or prior to going supersonic. In one embodiment, the SMA is stored below its Martensite finish temperature in a temperature-induced Martensite phase in which case the mechanism heats the SMA above the Austenite finish temperature to return the material to its memorized shape.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: November 15, 2011
    Assignee: Raytheon Company
    Inventors: Frederick B. Koehler, Ward D. Lyman, Terry M. Sanderson
  • Publication number: 20110240647
    Abstract: A container includes a housing and a cover which may be wholly or partially removed to open the container. A foil seal is used to seal the joint between the housing and the cover. The foil seal is internal to the container. The foil seal separates during opening of the cover, respective parts of the foil seal remaining with the housing and the cover. The foil seal may be a metal or metal-containing foil, for example being an aluminum, steel, or titanium foil, or a metalized plastic foil. A cutter, such as a serrated edge, may be positioned to facilitate cutting of the foil seal during cover opening. The container may be part of a seeker assembly with the housing being a seeker housing, and the cover being a removable or hinged cover that protects an optical seeker during some portions of flight, such as during launch of a spacecraft.
    Type: Application
    Filed: April 1, 2010
    Publication date: October 6, 2011
    Inventors: Michael J Broyles, Terry M. Sanderson, Douglas M. Beard, Brian D. Alfing
  • Patent number: 8016249
    Abstract: A shape-changing structural member has a shape-changing material, such as a suitable foam material, for example a polymer foam capable of withstanding at least 300% strain or a metal alloy foam capable of withstanding at least 5% strain. Springs, such as one or more coil springs, provide structural support for the shape-changing material. The springs may also be used to provide forces to expand and contract the shape change material. The springs may include pairs of concentric springs, one inside of another. The concentric springs may surround an underlying skeleton structure that supports the shape-changing material and/or aids in changing the shape of the material. The concentric springs may or may not be wrapped around the underlying skeleton structure. Multiple springs or pairs of springs may be coupled together using a sheet metal connector.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: September 13, 2011
    Assignee: Raytheon Company
    Inventors: David R. Sar, Terry M. Sanderson
  • Publication number: 20110212342
    Abstract: A shape-changing structural member has a shape-changing material, such as a suitable foam material, for example a polymer foam capable of withstanding at least 300% strain or a metal alloy foam capable of withstanding at least 5% strain. Springs, such as one or more coil springs, provide structural support for the shape-changing material. The springs may also be used to provide forces to expand and contract the shape change material. The springs may include pairs of concentric springs, one inside of another. The concentric springs may surround an underlying skeleton structure that supports the shape-changing material and/or aids in changing the shape of the material. The concentric springs may or may not be wrapped around the underlying skeleton structure. Multiple springs or pairs of springs may be coupled together using a sheet metal connector.
    Type: Application
    Filed: May 9, 2011
    Publication date: September 1, 2011
    Inventors: David R. Sar, Terry M. Sanderson
  • Patent number: 8007705
    Abstract: A polymer is formed into the shape of a one-piece composite part and then solidified by curing, setting, hardening or otherwise solidifying the polymer to form a shaped polymer form having a shape that does not draw. Composite material is laid up on the form and solidified to from the composite part. The rigidity required of the form to lay up the composite part can he provided by operating in the polymer form's glassy state, forming the shaped polymer form with a hollow core and placing a rigid insert designed to draw inside the hollow core with the polymer form in its elastomeric state or through a combination of both. In its elastomeric state the form becomes pliable (without relaxing to a different memorized shape) and can he drawn out of the one-piece composite part. Because the shape of the form does not draw, the form deforms as it is drawn. If used, the rigid insert is drawn out prior to removing the shaped polymer form.
    Type: Grant
    Filed: March 14, 2009
    Date of Patent: August 30, 2011
    Assignee: Raytheon Company
    Inventor: Terry M. Sanderson
  • Patent number: 7939178
    Abstract: A shape-changing structure has a superelastic metal foam structural member that changes shape (morphs) to change configuration of the structure. The superelastic metal foam structural member changes shape while maintaining a continuous outer surface, with the continuous metal foam material inside the outer surface expanding, contracting, or otherwise changing shape. The superelastic metal foam material may be heated above a transition temperature to allow it to change shape, and then cooled to cause it to increase in strength, more easily maintaining its new shape. The superelastic metal foam material may be a suitable alloy, for example a nickel titanium alloy, that exhibits superelastic (pseudoelastic) behavior. The superelastic metal foam material may be a shape memory alloy material that returns to a set shape upon moderate heating. The superelastic metal elastic foam structural member may be heated either by an internal heat source or by external heating.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: May 10, 2011
    Assignee: Raytheon Company
    Inventors: David R. Sar, Terry M. Sanderson, Thomas P. McCreery
  • Patent number: 7887734
    Abstract: A polymer is formed into the shape of a one-piece composite part and then solidified by curing, setting, hardening or otherwise solidifying the polymer to form a shaped polymer form having a shape that does not draw. Composite material is laid up on the form and solidified to from the composite part. The rigidity required of the form to lay up the composite part can be provided by operating in the polymer form's glassy state, forming the shaped polymer form with a hollow core and placing a rigid insert designed to draw inside the hollow core with the polymer form in its elastomeric state or through a combination of both. In its elastomeric state the form becomes pliable (without relaxing to a different memorized shape) and can be drawn out of the one-piece composite part. Because the shape of the form does not draw, the form deforms as it is drawn. If used, the rigid insert is drawn out prior to removing the shaped polymer form.
    Type: Grant
    Filed: March 14, 2009
    Date of Patent: February 15, 2011
    Assignee: Raytheon Company
    Inventor: Terry M. Sanderson
  • Publication number: 20100282906
    Abstract: A laminated wing structure includes at least one layer of metal material and at least one layer of a shape memory polymer (SMP) material. The SMP is heated to a temperature in its glass transition band Tg to roll the wing around the air vehicle into a stored position. The metal layer(s) must be thin enough to remain below its yield point when rolled up. In preparation for launch, the SMP material is thermally activated allowing the strain energy stored in the layer of metal material to return the wing to its deployed position at launch. Once deployed, the SMP cools to its glassy state. The SMP material may be reinforced with fiber to form a polymer matrix composite (PMC). SMP may be used to provide shear strain relief for multiple metal layers. By offloading the motive force required to return the wing to its original deployed position from the SMP to the metal, the polymer does not acquire a permanent set and the wing may be deployed accurately.
    Type: Application
    Filed: May 10, 2009
    Publication date: November 11, 2010
    Inventors: Terry M. Sanderson, Brian J. Gowler, David R. Sar, Thomas P. McCreery
  • Publication number: 20100243808
    Abstract: A shape-change material includes a shape memory material layer with an electrically conductive layer on a surface of the shape memory material layer. The conductive material may be used to heat the shape memory material by electrical resistance heating. The conductive material may be a primary heater, providing the heating to cause softening or shape change in the shape memory material, or may be a secondary heater in conjunction with a greater amount of heating from a primary heater, such as a conductive plate that provides electrical resistance heating to a surface of the shape memory material on an opposite side of the shape memory material from the conductive material. One use for the shape-change material is as the skin material for a shape changing material.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventor: Terry M. Sanderson
  • Publication number: 20100237192
    Abstract: A reinforced inflatable wing improves the tolerance of the OML and reinforces the wing in at least the high load areas. This approach provides fitment constrained air vehicles with wings having increased surface area to improve flight endurance or aerodynamic control. A wing box forms a first portion of the wing. A skin having a plurality of rigid plates affixed thereto is inflated to form a second portion of the wing to either increase the chord length or lengthen the wing span. The skin is suitably inflated with foam to form a solid wing.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 23, 2010
    Inventors: Terry M. Sanderson, Rudy A. Eisentraut, David B. Hatfield