Patents by Inventor Terry N. Tiegs

Terry N. Tiegs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090186267
    Abstract: An anode structure for lithium batteries includes nanofeatured silicon particulates dispersed in a conductive network. The particulates are preferably made from metallurgical grade silicon powder via HF/HNO3 acid treatment, yielding crystallite sizes from about 1 to 20 nm and pore sizes from about 1 to 100 nm. Surfaces of the particles may be terminated with selected chemical species to further modify the anode performance characteristics. The conductive network is preferably a carbonaceous material or composite, but it may alternatively contain conductive ceramics such as TiN or B4C. The anode structure may further contain a current collector of copper or nickel mesh or foil.
    Type: Application
    Filed: January 21, 2009
    Publication date: July 23, 2009
    Inventor: Terry N. Tiegs
  • Patent number: 6579393
    Abstract: Systems and methods are described for loss dielectrics. A method of manufacturing a lossy dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer and then densifying together. The systems and methods provide advantages because the lossy dielectrics are less costly and more environmentally friendly than the available alternatives.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: June 17, 2003
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Terry N. Tiegs, James O. Kiggans, Jr.
  • Patent number: 6509808
    Abstract: Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: January 21, 2003
    Assignee: Lockhead Martin Energy Research
    Inventors: Terry N. Tiegs, James O. Kiggans, Jr.
  • Publication number: 20010015509
    Abstract: Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.
    Type: Application
    Filed: April 18, 2001
    Publication date: August 23, 2001
    Applicant: LOCKHEED MARTIN ENERGY RESEARCH CORPORATION
    Inventors: Terry N. Tiegs, James O. Kiggans
  • Patent number: 6197243
    Abstract: A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.
    Type: Grant
    Filed: March 23, 1995
    Date of Patent: March 6, 2001
    Assignee: UT Battelle, LLC
    Inventors: Terry N. Tiegs, James O. Kiggans, Jr.
  • Patent number: 5905937
    Abstract: A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.
    Type: Grant
    Filed: January 6, 1998
    Date of Patent: May 18, 1999
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Kevin Plucknett, Terry N. Tiegs, Paul F. Becher
  • Patent number: 5538533
    Abstract: An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite.
    Type: Grant
    Filed: September 11, 1995
    Date of Patent: July 23, 1996
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Kathleen B. Alexander, Terry N. Tiegs, Paul F. Becher, Shirley B. Waters
  • Patent number: 5482673
    Abstract: A process for preparing ceramic composite comprising blending TiC particulates, Al.sub.2 O.sub.3 particulates and nickle aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m.sup.1/2, a hardness equal to or greater than 18 GPa.
    Type: Grant
    Filed: May 27, 1994
    Date of Patent: January 9, 1996
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Kathleen B. Alexander, Terry N. Tiegs, Paul F. Becher, Shirley B. Waters
  • Patent number: 5456877
    Abstract: A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.
    Type: Grant
    Filed: March 4, 1994
    Date of Patent: October 10, 1995
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Terry N. Tiegs, Dale E. Wittmer
  • Patent number: 5376600
    Abstract: A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.
    Type: Grant
    Filed: November 25, 1992
    Date of Patent: December 27, 1994
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventor: Terry N. Tiegs
  • Patent number: 5294264
    Abstract: A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.
    Type: Grant
    Filed: January 10, 1992
    Date of Patent: March 15, 1994
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Terry N. Tiegs, Cressie E. Holcombe, Norman L. Dykes, Ogbemi O. Omatete, Albert C. Young
  • Patent number: 5207958
    Abstract: A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.
    Type: Grant
    Filed: November 6, 1991
    Date of Patent: May 4, 1993
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventor: Terry N. Tiegs
  • Patent number: 5154779
    Abstract: A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: October 13, 1992
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Cressie E. Holcombe, Norman L. Dykes, Terry N. Tiegs
  • Patent number: 5017528
    Abstract: Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures.
    Type: Grant
    Filed: November 30, 1989
    Date of Patent: May 21, 1991
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Terry N. Tiegs, Terrence B. Lindemer
  • Patent number: 5015290
    Abstract: An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni.sub.3 Al.
    Type: Grant
    Filed: October 12, 1989
    Date of Patent: May 14, 1991
    Assignee: The Dow Chemical Company
    Inventors: Terry N. Tiegs, Robert R. McDonald
  • Patent number: 4994416
    Abstract: Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures.
    Type: Grant
    Filed: December 1, 1989
    Date of Patent: February 19, 1991
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Terry N. Tiegs, Terrence B. Lindemer
  • Patent number: 4919718
    Abstract: An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni.sub.3 Al.
    Type: Grant
    Filed: January 22, 1988
    Date of Patent: April 24, 1990
    Assignee: The Dow Chemical Company
    Inventors: Terry N. Tiegs, Robert R. McDonald
  • Patent number: 4916092
    Abstract: Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures.
    Type: Grant
    Filed: February 4, 1988
    Date of Patent: April 10, 1990
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Terry N. Tiegs, Terrence B. Lindemer
  • Patent number: 4839316
    Abstract: Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.
    Type: Grant
    Filed: October 26, 1987
    Date of Patent: June 13, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Terry N. Tiegs
  • Patent number: 4657877
    Abstract: The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.
    Type: Grant
    Filed: May 21, 1986
    Date of Patent: April 14, 1987
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Paul F. Becher, Terry N. Tiegs