Patents by Inventor Teruaki Ishikawa

Teruaki Ishikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150289960
    Abstract: A method and apparatus for performing simulation display of the three-dimensional shapes and occlusal contact region of the upper and lower tooth rows at a high speed. A jaw movement sensor fits an examinee, and data on jaw movement of the examinee is acquired. An impression plate including a rigid flat plate having a top surface and a bottom surface each coated with an impression material inserted between the examinee's upper and lower tooth rows to which the jaw movement sensor is fitted, and the examinee performs a temporary occlusion. Impressions left on the impression material and a gauge mark provided on the rigid flat plate are measured by using a three-dimensional measuring instrument, whereby the three-dimensional shape data of the upper and lower tooth rows and gauge mark are acquired. Simulation display of movement of the aforementioned is performed at a time of temporary occlusion and jaw movement data.
    Type: Application
    Filed: September 10, 2013
    Publication date: October 15, 2015
    Inventors: Shuji Shigemoto, Toyoko Satsuma, Naoto Noguchi, Yoshitaka Suzuki, Teruaki Ishikawa, Kazuo Okura
  • Patent number: 8109108
    Abstract: A ventilation flow path through which air present in an internal space at an instrument panel is drawn and discharged to the outside of the cabin as a blower fan operates is formed in a ventilation mode without forming an air-conditioning flow path for blowing inside air or outside air into the cabin and the air-conditioning flow path is formed without forming the ventilation flow path in a mode other than the ventilation mode.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: February 7, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroki Nagayama, Hajime Kato, Teruaki Ishikawa
  • Patent number: 7530386
    Abstract: A heat-removing device for a vehicle including: an interior part having a plate portion exposed to direct sunlight including a baseboard formed of a resin or a composite material containing a resin and a skin material which covers an outer surface of the baseboard; a heat conducting plate for collecting heat from the skin material, provided on an inner side of the skin material of the plate portion and inside of an inner surface of the baseboard in a direction of a thickness of the baseboard; and a heat pipe provided on an inner side of the inner surface of the baseboard and connected in heat-conductive relationship to the heat conducting plate, which transfers heat collected by the heat conducting plate to a heat releasing device.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: May 12, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroki Nagayama, Hajime Kato, Teruaki Ishikawa
  • Publication number: 20080271707
    Abstract: In a diesel engine system of a liquefied gas fuel, the present invention aims at the prevention of storing of the liquefied gas fuel in a cam chamber even when a diesel engine repeats stopping and operation thereof without returning the liquefied gas fuel in a fuel gallery of a fuel pressurizing device such as a supply pump or an injection pump to a fuel tank. An electrically-operated compressor 16e is subjected to an ON/OFF control by a cam chamber pressure regulating part 20. In the inside of a cam chamber 12, a cam chamber pressure sensor 121 which detects a pressure in the inside of the cam chamber 12 is arranged.
    Type: Application
    Filed: July 5, 2005
    Publication date: November 6, 2008
    Inventors: Shinya Nozaki, Toshifumi Noda, Daijo Ushiyama, Teruaki Ishikawa, Yukihiro Hayasaka
  • Patent number: 7318423
    Abstract: In the DME fuel supply device for a diesel engine, the time necessary to retrieve DME fuel remaining in the injection system after stopping the diesel engine into the fuel tank can be reduced. In a non-injection state, a three-way valve (71) is controlled to be OFF to form a communication passage in the direction indicated by the arrow B and a two-way valve (72) is controlled to be ON. DME fuel delivered from a feed pump (5) is delivered to an aspirator (7), passed from an inlet (7a) to the outlet (7b) thereof and returned to a fuel tank (4). That is, the DME fuel circulates via the aspirator. A vapor-phase pressure delivery pipe switching solenoid valve (75) is controlled to be ON and opened so that flow can pass through a vapor-phase pressure delivery pipe (73) connecting the vapor-phase (4a) in the fuel tank (4) and the inlet of the fuel gallery (11).
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: January 15, 2008
    Assignee: Bosch Automotive Systems Corporation
    Inventors: Shinya Nozaki, Toshifumi Noda, Daijo Ushiyama, Teruaki Ishikawa, Yukihiro Hayasaka
  • Patent number: 7293551
    Abstract: Since an aspirator 7 is disposed at a position lower than a fuel gallery 11 and an overflow fuel pipe 81, DME fuel remaining in the fuel gallery 11 and the overflow fuel pipe 81 can be more efficiently retrieved to a fuel tank 4 by a combined force of gravity and suction force produced in a suction port 7c of the aspirator 7. Since the vapor-phase pressure delivery pipe opening/closing solenoid valve 74 is disposed at a position higher than the fuel gallery 11, DME fuel in a liquid state remaining in the fuel gallery 11 and the overflow fuel pipe 81 is forcedly delivered under pressure to the suction port 7c of the aspirator 7 by a combined force of gravity and the pressure of a vapor phase 4b in the fuel tank 4. Accordingly, time taken to retrieve the DME fuel in an injection system to the fuel tank after the stop of a diesel engine.
    Type: Grant
    Filed: December 25, 2003
    Date of Patent: November 13, 2007
    Assignee: Bosch Automotive Systems Corporation
    Inventors: Shinya Nozaki, Toshifumi Noda, Daijo Ushiyama, Teruaki Ishikawa, Yukihiro Hayasaka
  • Patent number: 7287517
    Abstract: In the DME fuel supply device for a diesel engine, the time necessary to retrieve DME fuel remaining in the injection system after stopping the diesel engine into the fuel tank can be reduced. In a non-injection state, a three-way valve (71) is controlled to be OFF to form a communication passage in the direction indicated by the arrow B and a two-way valve (72) is controlled to be ON. DME fuel delivered from a feed pump (5) is delivered to an aspirator (7), passed from an inlet (7a) to the outlet (7b) thereof and returned to a fuel tank (4). That is, the DME fuel circulates via the aspirator. A vapor-phase pressure delivery pipe switching solenoid valve (75) is controlled to be ON and opened so that flow can pass through a vapor-phase pressure delivery pipe (73) connecting the vapor-phase (4a) in the fuel tank (4) and the inlet of the fuel gallery (11).
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: October 30, 2007
    Assignee: Bosch Corporation
    Inventors: Shinya Nozaki, Toshifumi Noda, Daijo Ushiyama, Teruaki Ishikawa, Yukihiro Hayasaka
  • Publication number: 20070084447
    Abstract: In the DME fuel supply device for a diesel engine, the time necessary to retrieve DME fuel remaining in the injection system after stopping the diesel engine into the fuel tank can be reduced. In a non-injection state, a three-way valve (71) is controlled to be OFF to form a communication passage in the direction indicated by the arrow B and a two-way valve (72) is controlled to be ON. DME fuel delivered from a feed pump (5) is delivered to an aspirator (7), passed from an inlet (7a) to the outlet (7b) thereof and returned to a fuel tank (4). That is, the DME fuel circulates via the aspirator. A vapor-phase pressure delivery pipe switching solenoid valve (75) is controlled to be ON and opened so that flow can pass through a vapor-phase pressure delivery pipe (73) connecting the vapor-phase (4a) in the fuel tank (4) and the inlet of the fuel gallery (11).
    Type: Application
    Filed: December 19, 2006
    Publication date: April 19, 2007
    Applicant: Bosch Corporation
    Inventors: Shinya Nozaki, Toshifumi Noda, Daijo Ushiyama, Teruaki Ishikawa, Yukihiro Hayasaka
  • Publication number: 20060196652
    Abstract: A ventilation flow path through which air present in an internal space at an instrument panel is drawn and discharged to the outside of the cabin as a blower fan operates is formed in a ventilation mode without forming an air-conditioning flow path for blowing inside air or outside air into the cabin and the air-conditioning flow path is formed without forming the ventilation flow path in a mode other than the ventilation mode.
    Type: Application
    Filed: February 24, 2006
    Publication date: September 7, 2006
    Inventors: Hiroki Nagayama, Hajime Kato, Teruaki Ishikawa
  • Publication number: 20060140594
    Abstract: A heat-removing device for a vehicle including: an interior part having a plate portion exposed to direct sunlight including a baseboard formed of a resin or a composite material containing a resin and a skin material which covers an outer surface of the baseboard; a heat conducting plate for collecting heat from the skin material, provided on an inner side of the skin material of the plate portion and inside of an inner surface of the baseboard in a direction of a thickness of the baseboard; and a heat pipe provided on an inner side of the inner surface of the baseboard and connected in heat-conductive relationship to the heat conducting plate, which transfers heat collected by the heat conducting plate to a heat releasing device.
    Type: Application
    Filed: December 22, 2005
    Publication date: June 29, 2006
    Inventors: Hiroki Nagayama, Hajime Kato, Teruaki Ishikawa
  • Publication number: 20060054141
    Abstract: Since an aspirator 7 is disposed at a position lower than a fuel gallery 11 and an overflow fuel pipe 81, DME fuel remaining in the fuel gallery 11 and the overflow fuel pipe 81 can be more efficiently retrieved to a fuel tank 4 by a combined force of gravity and suction force produced in a suction port 7c of the aspirator 7. Since the vapor-phase pressure delivery pipe opening/closing solenoid valve 74 is disposed at a position higher than the fuel gallery 11, DME fuel in a liquid state remaining in the fuel gallery 11 and the overflow fuel pipe 81 is forcedly delivered under pressure to the suction port 7c of the aspirator 7 by a combined force of gravity and the pressure of a vapor phase 4b in the fuel tank 4. Accordingly, time taken to retrieve the DME fuel in an injection system to the fuel tank after the stop of a diesel engine.
    Type: Application
    Filed: December 25, 2003
    Publication date: March 16, 2006
    Applicant: Bosch Automotive Systems Corporation
    Inventors: Shinya Nozaki, Toshifumi Noda, Daiji Ushiyama, Teruaki Ishikawa, Yukihiro Hayasaka
  • Publication number: 20050145223
    Abstract: In the DME fuel supply device for a diesel engine, the time necessary to retrieve DME fuel remaining in the injection system after stopping the diesel engine into the fuel tank can be reduced. In a non-injection state, a three-way valve (71) is controlled to be OFF to form a communication passage in the direction indicated by the arrow B and a two-way valve (72) is controlled to be ON. DME fuel delivered from a feed pump (5) is delivered to an aspirator (7), passed from an inlet (7a) to the outlet (7b) thereof and returned to a fuel tank (4). That is, the DME fuel circulates via the aspirator. A vapor-phase pressure delivery pipe switching solenoid valve (75) is controlled to be ON and opened so that flow can pass through a vapor-phase pressure delivery pipe (73) connecting the vapor-phase (4a) in the fuel tank (4) and the inlet of the fuel gallery (11).
    Type: Application
    Filed: March 5, 2003
    Publication date: July 7, 2005
    Inventors: Shinya Nozaki, Toshifumi Noda, Daijo Ushiyama, Teruaki Ishikawa, Yukihiro Hayasaka