Patents by Inventor Terumasa Hidaka

Terumasa Hidaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8986144
    Abstract: A power transmission device is used to distribute torque from a power source to an external device and an auxiliary device. The power transmission device is comprised of a first bearing and a second bearing both secured to a stationary member, a first sprocket rotatably supported by the first bearing, a second sprocket capable of being drivingly coupled with the auxiliary device, a chain coupling the first sprocket with the second sprocket, a rotary shaft rotatably supported by the second bearing, which is drivingly coupled with the power source and drivingly engageable with the external device to transmit a first part of the torque to the external device, and a joint drivingly linking the rotary shaft with the first sprocket to transmit a second part of the torque to the first sprocket.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: March 24, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Norihiro Takemoto, Yasuo Takagi, Terumasa Hidaka
  • Patent number: 8602940
    Abstract: A hybrid driving force transmission device includes an engine (E), a motor-clutch unit (MC), and a transmission unit (T). The motor-clutch unit (MC) is coupled to the engine (E), and includes a multi-plate dry clutch (7) and a slave cylinder (8). The transmission unit (T) is coupled to the motor-clutch unit (MC), and includes a transmission housing (41), a V-belt type continuously variable transmission mechanism (42), and an oil pump (OP). A cylinder housing (81) which comprises a first clutch pressure oil passage (85) communicating with the slave cylinder (8) is provided in the motor-clutch unit (MC). By coupling the motor-clutch unit (MC), a second clutch pressure oil passage (47) is brought into communication with the first clutch pressure oil passage (85) in the cylinder housing (81). An end plate (45) having the second clutch pressure oil passage (47) is provided in the transmission unit (T).
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: December 10, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takashi Kuwahara, Terumasa Hidaka, Norihiro Takemoto
  • Publication number: 20130059695
    Abstract: A hybrid driving force transmission device includes an engine (E), a motor-clutch unit (MC), and a transmission unit (T). The motor-clutch unit (MC) is coupled to the engine (E), and includes a multi-plate dry clutch (7) and a slave cylinder (8). The transmission unit (T) is coupled to the motor-clutch unit (MC), and includes a transmission housing (41), a V-belt type continuously variable transmission mechanism (42), and an oil pump (OP). A cylinder housing (81) which comprises a first clutch pressure oil passage (85) communicating with the slave cylinder (8) is provided in the motor-clutch unit (MC). By coupling the motor-clutch unit (MC), a second clutch pressure oil passage (47) is brought into communication with the first clutch pressure oil passage (85) in the cylinder housing (81). An end plate (45) having the second clutch pressure oil passage (47) is provided in the transmission unit (T).
    Type: Application
    Filed: May 20, 2011
    Publication date: March 7, 2013
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Takashi Kuwahara, Terumasa Hidaka, Norihiro Takemoto
  • Publication number: 20110287882
    Abstract: A power transmission device is used to distribute torque from a power source to an external device and an auxiliary device. The power transmission device is comprised of a first bearing and a second bearing both secured to a stationary member, a first sprocket rotatably supported by the first bearing, a second sprocket capable of being drivingly coupled with the auxiliary device, a chain coupling the first sprocket with the second sprocket, a rotary shaft rotatably supported by the second bearing, which is drivingly coupled with the power source and drivingly engageable with the external device to transmit a first part of the torque to the external device, and a joint drivingly linking the rotary shaft with the first sprocket to transmit a second part of the torque to the first sprocket.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 24, 2011
    Inventors: Norihiro TAKEMOTO, Yasuo TAKAGI, Terumasa HIDAKA
  • Patent number: 8060266
    Abstract: A mode changeover control device for a hybrid vehicle includes an engine, a motor/generator and at least one driving wheel. A changeover between an electric drive mode using only the electric motor to power the at least one driving wheel and a hybrid drive mode using both the engine and the electric motor to power the at least one driving wheel is controlled. The drive mode is changed from the hybrid drive mode to the electric drive mode if the accelerator opening is less than a first threshold level, and the drive mode is changed from the electric drive mode to the hybrid drive mode if the accelerator opening is greater than a second threshold level. A hysteresis value is defined between the first threshold level and the second threshold level, and the hysteresis value is changed based on a vehicle operating state.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: November 15, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Terumasa Hidaka, Munetoshi Ueno, Katsuyuki Saito
  • Patent number: 7784575
    Abstract: A hybrid vehicle drive control system is configured to perform engine startup when switching from an electric drive mode to a hybrid drive mode, without creating a sense of output torque loss. In particular, a controller selectively controls a first clutch disposed between the engine and the motor/generator and a second clutch disposed between the motor/generator and a drive wheel to switch between an electric drive mode in which the first clutch is released and the second clutch is engaged, and a hybrid drive mode in which both the first and second clutches are engaged. The controller sets the second torque transfer capacity to a value that is more than zero and less than the target motor/generator torque of the motor/generator when switching from the electric drive mode to the hybrid drive mode and when starting the engine.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: August 31, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tsuyoshi Yamanaka, Kazuyuki Kouno, Munetoshi Ueno, Tadashi Okuda, Shinichiro Joe, Taiichi Onoyama, Terumasa Hidaka, Haruhisa Tsuchikawa, Ken Ito, Kazutaka Adachi
  • Patent number: 7730982
    Abstract: In general, an oil pump driving control device for a hybrid vehicle is described. A hybrid vehicle includes a drive-train configured and arranged to transmit power in the order of an engine, a first clutch, a motor generator, a second clutch and a drive wheel, and an oil pump operably configured and arranged at a location between the first clutch and the second clutch such that the oil pump is mechanically driven by at least one of the engine and the motor generator. The invention provides an oil pump driving control device that supplies the necessary oil pressure for an automatic transmission with only a single mechanical oil pump. For example, even when it is not possible to maintain tightening of the second clutch, oil pressure may be supplied by rotating the oil pump using the motor generator. In this way, the oil pressure may be supplied with a single oil pump.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: June 8, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Terumasa Hidaka, Taiichi Onoyama, Koichi Hayasaki
  • Patent number: 7493980
    Abstract: A hybrid vehicle mode transition control apparatus includes a hybrid drive system having a first clutch disposed between an engine and a motor generator, and a second clutch disposed between the motor generator and wheels; an engine braking request judging section configured to judge whether a request of an engine braking is present during a motor regenerative braking performed by the motor generator, and a mode transition control section configured to perform a mode transition control of the hybrid drive system in accordance with a transition request. The mode transition control apparatus is configured to decrease a torque capacity of the second clutch being in an engaged state in response to the judgment that the request of the engine braking is present, and to bring the first clutch from a disengaged state to the engaged state to shift to the engine braking.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: February 24, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Terumasa Hidaka
  • Publication number: 20080154455
    Abstract: A mode changeover control device for a hybrid vehicle includes an engine, a motor/generator and at least one driving wheel. A changeover between an electric drive mode using only the electric motor to power the at least one driving wheel and a hybrid drive mode using both the engine and the electric motor to power the at least one driving wheel is controlled. The drive mode is changed from the hybrid drive mode to the electric drive mode if the accelerator opening is less than a first threshold level, and the drive mode is changed from the electric drive mode to the hybrid drive mode if the accelerator opening is greater than a second threshold level. A hysteresis value is defined between the first threshold level and the second threshold level, and the hysteresis value is changed based on a vehicle operating state.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 26, 2008
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Terumasa Hidaka, Munetoshi Ueno, Katsuyuki Saito
  • Publication number: 20070102207
    Abstract: A hybrid vehicle drive control system is configured to perform engine startup when switching from an electric drive mode to a hybrid drive mode, without creating a sense of output torque loss. In particular, a controller selectively controls a first clutch disposed between the engine and the motor/generator and a second clutch disposed between the motor/generator and a drive wheel to switch between an electric drive mode in which the first clutch is released and the second clutch is engaged, and a hybrid drive mode in which both the first and second clutches are engaged. The controller sets the second torque transfer capacity to a value that is more than zero and less than the target motor/generator torque of the motor/generator when switching from the electric drive mode to the hybrid drive mode and when starting the engine.
    Type: Application
    Filed: November 6, 2006
    Publication date: May 10, 2007
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Tsuyoshi Yamanaka, Kazuyuki Kouno, Munetoshi Ueno, Tadashi Okuda, Shinichiro Joe, Taiichi Onoyama, Terumasa Hidaka, Haruhisa Tsuchikawa, Ken Itou, Kazutaka Adachi
  • Publication number: 20060272869
    Abstract: In general, an oil pump driving control device for a hybrid vehicle is described. A hybrid vehicle includes a drive-train configured and arranged to transmit power in the order of an engine, a first clutch, a motor generator, a second clutch and a drive wheel, and an oil pump operably configured and arranged at a location between the first clutch and the second clutch such that the oil pump is mechanically driven by at least one of the engine and the motor generator. The invention provides an oil pump driving control device that supplies the necessary oil pressure for an automatic transmission with only a single mechanical oil pump. For example, even when it is not possible to maintain tightening of the second clutch, oil pressure may be supplied by rotating the oil pump using the motor generator. In this way, the oil pressure may be supplied with a single oil pump.
    Type: Application
    Filed: June 5, 2006
    Publication date: December 7, 2006
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Terumasa Hidaka, Taiichi Onoyama, Koichi Hayasaki
  • Publication number: 20060243501
    Abstract: A hybrid vehicle mode transition control apparatus includes a hybrid drive system having a first clutch disposed between an engine and a motor generator, and a second clutch disposed between the motor generator and wheels; an engine braking request judging section configured to judge whether a request of an engine braking is present during a motor regenerative braking performed by the motor generator, and a mode transition control section configured to perform a mode transition control of the hybrid drive system in accordance with a transition request. The mode transition control apparatus is configured to decrease a torque capacity of the second clutch being in an engaged state in response to the judgment that the request of the engine braking is present, and to bring the first clutch from a disengaged state to the engaged state to shift to the engine braking.
    Type: Application
    Filed: April 27, 2006
    Publication date: November 2, 2006
    Inventor: Terumasa Hidaka