Patents by Inventor Teruo Izumi

Teruo Izumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6610632
    Abstract: The present invention provides a tape-form oxide superconductor having a high degree of c-axis alignment and in-plane alignment and an improved Jc value. On a tape-form metal substrate which is non-magnetic or weakly magnetic and has high strength, there are sequentially formed a first intermediate layer wherein YSZ or Zr2Rx2O7 particles are deposited from a target with ion irradiation from a direction inclined to the metal substrate, a second intermediate layer of CeO2 or Y2O3 is formed and an RE1+XBa2−XCu3OY superconducting layer is formed by coating metalorganic salts containing F, followed by thermal decomposition.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: August 26, 2003
    Assignees: International Superconductivity Technology Center, The Juridicial Foundation, Showa Electric Wire & Cable Co., Ltd., Fujikura Ltd., Railway Technical Research Institute, Kabushiki Kaisha Toshiba
    Inventors: Tetsuji Honjo, Hiroshi Fuji, Yuichi Nakamura, Teruo Izumi, Takeshi Araki, Yutaka Yamada, Izumi Hirabayashi, Yuh Shiohara, Yasuhiro Iijima, Kaoru Takeda
  • Patent number: 6561412
    Abstract: Methods for implementing production of an oxide superconductor joined member, excellent in electric current transmission performance, without a need of going through particularly complex steps, are provided. When joining together oxide superconductors by use of a solder composed of an oxide superconducting material, a finally solidified portion of the solder is positioned in a region where a transmission path of electric current flowing between oxide superconductor base materials as joined together is not obstructed by, for example, disposing the solder on a face of the oxide superconductor base materials, other than butting surfaces of the oxide superconductor base materials, so as to straddle both the base materials like bridge-building. Current flow is also not obstructed by, for example, shaping junction faces of the oxide superconductor base materials such that at least portions of the butting surfaces thereof are in the shape of sloped open faces, parting from each other.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: May 13, 2003
    Assignee: Superconductivity Research Laboratory
    Inventors: Jyunya Maeda, Susumu Seiki, Teruo Izumi, Yuh Shiohara
  • Publication number: 20020076567
    Abstract: The present invention provides a tape-formed oxide superconductor having high c-axis alignment and in-plane alignment and an improved Jc value. Thus, on a tape-formed metal substrate of non-magnetism or weak magnetism and high strength, there are sequentially formed a first intermediate layer where YSZ or Zr2Rx2O7 particles generated from the target are deposited onto the metal substrate together with irradiation of ion from an inclined direction to the metal substrate, a second intermediate layer comprising CeO2 or Y2O3 and an RE1+XBa2−XCu3OY superconducting layer formed by coating of metalorganic salts containing F followed by subjecting to a thermal decomposition.
    Type: Application
    Filed: October 12, 2001
    Publication date: June 20, 2002
    Inventors: Tetsuji Honjo, Hiroshi Fuji, Yuichi Nakamura, Teruo Izumi, Takeshi Araki, Yutaka Yamada, Izumi Hirabayashi, Yuh Shiohara, Yasuhiro Iijima, Kaoru Takeda
  • Publication number: 20010015371
    Abstract: Means of implementing production of an oxide superconductor joined member, excellent in electric current transmission performance, without a need of going through particularly complex steps, are provided. When joining together oxide superconductors by use of a solder composed of an oxide superconducting material, a finally solidified portion of the solder is positioned in a region where a transmission path of electric current flowing between oxide superconductor base materials as joined together is not obstructed by, for example, disposing the solder on a face of the oxide superconductor base materials, other than butting surfaces of the oxide superconductor base materials, so as to straddle both the base materials like bridge-building, or by, for example, shaping junction faces of the oxide superconductor base materials such that at least portions of the butting surfaces thereof are in the shape of sloped open faces, parting from each other.
    Type: Application
    Filed: November 30, 2000
    Publication date: August 23, 2001
    Inventors: Jyunya Maeda, Susumu Seiki, Teruo Izumi, Yuh Shiohara
  • Patent number: 6267816
    Abstract: This is a method for growing by pulling single crystals 6 using CZ process from material melt 5 to which cusp magnetic field is applied. Inside diameter U of the crucible 3 that contains the material melt 5 is (Y+140 mm) or larger and less than 3Y, where Y stands for outside diameter of the single crystal 6. When cusp magnetic field is applied, high pulling yield is maintained even if the inside diameter U of the crucible is small. Oxygen yield and dislocation free yield are improved by reducing inside diameter U of the crucible. As a result, the yield of manufacturing single crystals 6 is improved.
    Type: Grant
    Filed: March 23, 1999
    Date of Patent: July 31, 2001
    Assignee: Sumitomo Sitix Corporation
    Inventor: Teruo Izumi
  • Patent number: 6235685
    Abstract: A rod 1 made of superconducting oxide is soaked in a molten normal conductor 2 to join the rod 1 and the normal conductor 2, whereby a superconducting oxide current lead is prepared. As a result, a contact resistance at the interface between the superconducting oxide and the normal conductor can be reduced. Consequently, Joule's heat at a current lead having a small cross sectional area can be suppressed low, which in turn realizes the reduction of the load on a freezer and the amount of evaporated cooling solvent, with respect to a superconducting coil.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: May 22, 2001
    Assignee: International Superconductivity Technology Center
    Inventors: Junya Maeda, Teruo Izumi, Yuichi Imagawa, Satoshi Matsuoka, Yuh Shiohara, Shoji Tanaka, Hiroshi Okamoto
  • Patent number: 6210477
    Abstract: The present invention relates to methods for pulling a single crystal wherein the induction of dislocation can be inhibited and a single crystal can be held safely. An apparatus for pulling a single crystal having a straightening vane in the shape of an inverted truncated cone whose upper and lower planes are removed, which is located between a crucible and a single crystal, is used. The gap between the lower end portion of the straightening vane and the surface of a melt filled into the crucible can be selected in the range of 30-200 mm. Where the gap is set large in the range of 30-200 mm, the temperature of the front portion of a seed crystal is raised till the difference in temperature between the front portion thereof and the melt (the range of 1380-1480° C.) becomes almost zero. The seed crystal is brought into contact with the melt, a neck is formed with being heated, and a main body is pulled from the melt.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: April 3, 2001
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Teruo Izumi, Hideki Watanabe
  • Patent number: 6139632
    Abstract: When a pulled single crystal becomes heavier, the strength of a seed crystal holder made of a carbon material is not sufficient, leading to falling of the single crystal. On the other hand, a seed crystal holder made of metal causes heavy metal contamination, or the strength thereof deteriorates early because of thermal fatigue. Accordingly, a seed crystal holder, comprising an inner cylindrical body made of metal which directly holds a seed crystal, and a carbon cylindrical body arranged around the inner cylindrical body which covers the periphery thereof, is used.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: October 31, 2000
    Assignee: Sumitomo Sitix Corporation
    Inventor: Teruo Izumi
  • Patent number: 6019836
    Abstract: In a conventional method for pulling a single crystal, a neck having a smaller diameter has been formed in order to exclude dislocation induced in dipping a seed crystal into a melt. However, in pulling a heavy single crystal having a large diameter of 12 inches or more, the single crystal cannot be supported and falls. When the diameter of the neck is large enough to prevent the fall, the dislocation cannot be excluded and propagates to the single crystal. According to the present invention, in a method for pulling a single crystal wherein a seed crystal is brought into contact with a melt within a crucible and then, a neck and a main body are formed, by setting the rotational speed of the seed crystal in the neck formation lower than the rotational speed thereof in the main body formation, dislocation can be efficiently excluded outward even if the neck is not too much narrowed down.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: February 1, 2000
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Teruo Izumi
  • Patent number: 6015461
    Abstract: When a pulled single crystal becomes heavier, the strength of a seed crystal holder made of a carbon material is not sufficient, leading to falling of the single crystal. On the other hand, a seed crystal holder made of metal causes heavy metal contamination, or the strength thereof deteriorates early because of thermal fatigue. Accordingly, a seed crystal holder, comprising an inner cylindrical body made of metal which directly holds a seed crystal, and a carbon cylindrical body arranged around the inner cylindrical body which covers the periphery thereof, is used.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: January 18, 2000
    Assignee: Sumitomo Sitix Corporation
    Inventor: Teruo Izumi
  • Patent number: 5993539
    Abstract: In a conventional method for pulling a single crystal, a neck having a smaller diameter has been formed in order to exclude dislocation induced in dipping a seed crystal into a melt. However, in pulling a heavy single crystal having a large diameter of 12 inches or more, the single crystal cannot be supported and falls. When the diameter of the neck is large enough to prevent the fall, the dislocation cannot be excluded and propagates to the single crystal. In the present invention, when the distance between the lowest end of the seed crystal and the melt is 10-100 mm, the seed crystal is caused to stop descending and is preheated. Then, by bringing the seed crystal into contact with the melt at a gradually decreased descent speed, dislocation is not induced to the single crystal and the single crystal is formed without a neck.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: November 30, 1999
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Teruo Izumi
  • Patent number: 5932002
    Abstract: In a conventional method for pulling a single crystal, in order to exclude the dislocation induced in contact of a seed crystal with a melt, a neck having a small diameter has been formed. But when a heavy single crystal having a large diameter of 12 inches or so is pulled, it is impossible to hold the single crystal, leading to the falling. When the diameter of the neck is made larger in order to prevent the falling, the dislocation cannot be excluded, leading to the propagation of the dislocation to the single crystal. In the present invention, using a seed crystal having a cylindrical body and a conical front portion, the induction of the dislocation is inhibited by making the temperature of the front portion almost the same as the temperature of the melt when the front portion of the seed crystal is brought into contact with the melt and a single crystal is pulled without forming a neck after melting part of the front portion into the melt.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: August 3, 1999
    Assignee: Sumitomo Sitix Corporation
    Inventor: Teruo Izumi
  • Patent number: 5916364
    Abstract: Methods and apparatuses for pulling a single crystal. In a conventional method for pulling a single crystal, a neck having a smaller diameter has been formed in order to exclude dislocation induced in dipping a seed crystal into a melt. But in pulling a heavy single crystal having a large diameter of 12 inches or more, the single crystal cannot be supported and falls. When the diameter of the neck is large enough to prevent the fall, the dislocation can not be excluded and propagates to the single crystal. In the present invention, using an apparatus for pulling a single crystal having a laser beam generator or an incoherent light generating-inducing apparatus, the temperature of the front portion of the seed crystal is gradually raised by being irradiated with the laser beam or the incoherent light, and then, the seed crystal is dipped into the melt. As a result, the induction of the dislocation to the seed crystal caused by a thermal stress is prevented.
    Type: Grant
    Filed: January 8, 1998
    Date of Patent: June 29, 1999
    Assignee: Sumitomo Sitix Corporation
    Inventor: Teruo Izumi
  • Patent number: 5407907
    Abstract: A method of pulling a crystal of a metal oxide is disclosed, in which the growth of the crystal is performed in a liquid phase having a composition which is different from the metal oxide and which contains components constituting the metal oxide. The liquid phase is in contact with a solid phase located at a position separated from the position at which the crystal of the metal oxide grows. The solid phase has a composition different from that of the metal oxide and supplies components constituting the metal oxide to the liquid phase.
    Type: Grant
    Filed: May 21, 1993
    Date of Patent: April 18, 1995
    Assignees: International Superconductivity Technology Center, Asahi Glass Co., Ltd., Ishikawajimaharima Jukogyo Kabushiki Kaisha, Sumitomo Metal Industries, Ltd., Kyushu Electric Power Co., Railway Technical Research Institute
    Inventors: Yasuji Yamada, Teruo Izumi, Kanshi Ohtsu, Yuichi Nakamura, Kengo Ishige, Yuh Shiohara, Minoru Tagami, Shoji Tanaka