Patents by Inventor Teruyo KATO

Teruyo KATO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240077493
    Abstract: Provided is a non-transitory computer-readable medium storing a program for causing a computer to execute the steps including a step of subjecting a sample containing microorganisms to mass spectrometry to obtain a mass spectrum, a step of reading a mass-to-charge ratio m/z of a peak derived from a marker protein from the mass spectrum, and an identification step of identifying which bacteria of serovar of Salmonella genus bacteria the microorganisms contained in the sample contain, based on the mass-to-charge ratio m/z, wherein at least one of two types of ribosomal proteins S8 and Peptidylpropyl isomerase is used as the marker protein.
    Type: Application
    Filed: July 13, 2023
    Publication date: March 7, 2024
    Applicants: SHIMADZU Corporation, Meijo University
    Inventors: Hiroto Tamura, Naomi Yamamoto, Teruyo Kato, Keisuke Shima, Shinji Funatsu
  • Publication number: 20240060987
    Abstract: Provided is a method of identifying a serovar of Salmonella bacteria including a step of subjecting a sample containing microorganisms to mass spectrometry to obtain a mass spectrum, a step of reading a mass-to-charge ratio m/z of a peak derived from a marker protein from the mass spectrum, and an identification step of identifying a serovar of Salmonella bacteria in the sample, based on the mass-to-charge ratio m/z, wherein the serovars of Salmonella bacteria are classified using cluster analysis using as an index the mass-to-charge ratio m/z derived from at least 12 types of ribosomal proteins S8, L15, L17, L21, L25, S7, SODa, peptidylprolyl isomerase, gns, YibT, YaiA and YciF as the marker proteins.
    Type: Application
    Filed: July 13, 2023
    Publication date: February 22, 2024
    Applicants: SHIMADZU CORPORATION, MEIJO UNIVERSITY
    Inventors: Hiroto TAMURA, Naomi YAMAMOTO, Teruyo KATO, Keisuke SHIMA, Shinji FUNATSU
  • Patent number: 11747344
    Abstract: A microorganism identification method according to the present invention includes a step of subjecting a sample containing microorganisms to mass spectrometry to obtain a mass spectrum, a step of reading a mass-to-charge ratio m/z of a peak derived from a marker protein from the mass spectrum, and an identification step of identifying which bacteria of serovar of Salmonella genus bacteria the microorganisms contained in the sample contain, based on the mass-to-charge ratio m/z, in which at least one of two types of ribosomal proteins S8 and Peptidylpropyl isomerase is used as the marker protein.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: September 5, 2023
    Assignees: SHIMADZU CORPORATION, MEIJO UNIVERSITY
    Inventors: Hiroto Tamura, Naomi Yamamoto, Teruyo Kato, Keisuke Shima, Shinji Funatsu
  • Publication number: 20230213528
    Abstract: To provide a method for discriminating a microorganism by selecting and using a marker protein capable of reproducibly and quickly discriminating a bacterial species of the genus Listeria. The method for discriminating a microorganism according to the present invention includes: a step of subjecting a sample containing a microorganism to mass spectrometry to obtain a mass spectrum; a reading step of reading a mass-to-charge ratio m/z of a peak derived from a marker protein from the mass spectrum; and a discrimination step of discriminating which bacterial species of Listeria bacteria the microorganism contained in the sample contains based on the mass-to-charge ratio m/z, in which at least one of 17 ribosomal proteins L3, L4, L23, L2, L24, L6, L18, S5, L15, S13, S11, L10, L21, L13, S9, L31, S16 is used as the marker protein and particularly at least one of 8 ribosomal proteins L24, L6, L18, L15, S9, L31, S16 among the 17 ribosomal proteins is used.
    Type: Application
    Filed: November 28, 2022
    Publication date: July 6, 2023
    Applicants: SHIMADZU CORPORATION, MEIJO UNIVERSITY
    Inventors: Hiroto TAMURA, Naomi YAMAMOTO, Teruyo KATO, Keisuke SHIMA, Shinji FUNATSU
  • Patent number: 11561228
    Abstract: To provide a method for discriminating a microorganism by selecting and using a marker protein capable of reproducibly and quickly discriminating a bacterial species of the genus Listeria. The method for discriminating a microorganism according to the present invention includes: a step of subjecting a sample containing a microorganism to mass spectrometry to obtain a mass spectrum; a reading step of reading a mass-to-charge ratio m/z of a peak derived from a marker protein from the mass spectrum; and a discrimination step of discriminating which bacterial species of Listeria bacteria the microorganism contained in the sample contains based on the mass-to-charge ratio m/z, in which at least one of 17 ribosomal proteins L3, L4, L23, L2, L24, L6, L18, S5, L15, S13, S11, L10, L21, L13, S9, L31, S16 is used as the marker protein and particularly at least one of 8 ribosomal proteins L24, L6, L18, L15, S9, L31, S16 among the 17 ribosomal proteins is used.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: January 24, 2023
    Assignees: SHIMADZU CORPORATION, MEIJO UNIVERSITY
    Inventors: Hiroto Tamura, Naomi Yamamoto, Teruyo Kato, Keisuke Shima, Shinji Funatsu
  • Patent number: 11435370
    Abstract: A sample group forming section 24 classifies samples derived from microorganisms into groups according to empirical information showing the species or strain of each sample. A differential analysis section 27 performs a differential analysis using a peak matrix created based on the result of the grouping. An operator enters group rearrangement conditions concerning the drug resistance of microorganisms. Under the entered conditions, a sample group rearranging/rearrangement-cancelling section 25 rearranges the already formed groups by selecting or merging groups using another kind of previously registered empirical information which shows the drug resistance of each group. The differential analysis section 27 performs a differential analysis using a peak matrix newly created based on the result of the rearrangement of the groups. Thus, differential analysis results concerning the resistance to different drugs can be sequentially acquired as the group rearrangement condition is successively changed.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: September 6, 2022
    Assignee: SHIMADZU CORPORATION
    Inventors: Yoshihiro Yamada, Koretsugu Ogata, Hiroto Tamura, Teruyo Kato
  • Patent number: 11137398
    Abstract: In a method for analyzing a microorganism using a matrix assisted laser desorption/ionization mass spectrometer, a matrix-and-additive mixture solution prepared by mixing one or both of an alkylphosphonic acid and a surfactant with a matrix substance is used for matrix assisted laser desorption/ionization. Either an alkylphosphonic acid or a surfactant, or both of them are used as matrix additives and are mixed with the matrix substance beforehand to prepare a matrix-and-additive mixture solution. After a solution which contains a microorganism to be analyzed has been dropped onto a sample plate, the matrix-and-additive mixture solution is dropped onto that solution and dried to form a mixed crystal which contains both the constituents of the microorganism and the matrix substance. This crystal is used as a sample for MALDI-MS analysis. The sensitivity of analysis is thereby improved, without increasing the amount of time and labor required for sample preparation.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: October 5, 2021
    Assignee: SHIMADZU CORPORATION
    Inventors: Yuko Fukuyama, Hiroto Tamura, Teruyo Kato
  • Patent number: 11137406
    Abstract: To provide a method for discriminating a microorganism including: a step of subjecting a sample containing a microorganism to mass spectrometry to obtain a mass spectrum; a reading step of reading a mass-to-charge ratio m/z of a peak derived from a marker protein from the mass spectrum; and a discrimination step of discriminating which bacterial species of Escherichia coli, Shigella bacteria, and Escherichia albertii the microorganism contained in the sample contains based on the mass-to-charge ratio m/z, in which at least one of 13 ribosomal proteins S5, L15, S13, L31, L22, L19, L20, L13, S15, L25, HNS, HdeB, and L29 is used as the marker protein.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: October 5, 2021
    Assignees: SHIMADZU CORPORATION, MEIJO UNIVERSITY
    Inventors: Hiroto Tamura, Naomi Yamamoto, Teruyo Kato, Keisuke Shima, Shinji Funatsu
  • Patent number: 11085928
    Abstract: A microorganism identification method includes steps of: obtaining a mass spectrum through mass spectrometry of a sample including microorganisms; reading, from the mass spectrum, a mass-to-charge ratio m/z of a peak associated with a marker protein; and identifying which bacterial species of the genus Campylobacter are included in the microorganisms in the sample based on the mass-to-charge ratio m/z. The microorganism identification method is further characterized in that at least one of the following 18 marker proteins is used as the marker protein, S10, L23, S19, L22, L16, L29, S17, L14, L24, S14, L18, L15, L36, S13, S11 (Me), L32, and L7/L12.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 10, 2021
    Assignees: SHIMADZU CORPORATION, MEIJO UNIVERSITY
    Inventors: Hiroto Tamura, Naomi Yamamoto, Teruyo Kato, Keisuke Shima, Shinji Funatsu
  • Patent number: 11047862
    Abstract: A microorganism identification method includes steps of: obtaining a mass spectrum through mass spectrometry of a sample including microorganisms; reading, from the mass spectrum, a mass-to-charge ratio m/z of a peak associated with a marker protein; and identifying which bacterial species of the genus Campylobacter are included in the microorganisms in the sample based on the mass-to-charge ratio m/z. The microorganism identification method is further characterized in that at least one of the following 18 marker proteins is used as the marker protein, S10, L23, S19, L22, L16, L29, S17, L14, L24, S14, L18, L15, L36, S13, S11 (Me), L32, and L7/L12.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: June 29, 2021
    Assignees: SHIMADZU CORPORATION, MEIJO UNIVERSITY
    Inventors: Hiroto Tamura, Naomi Yamamoto, Teruyo Kato, Keisuke Shima, Shinji Funatsu
  • Patent number: 10975376
    Abstract: The present invention is intended to provide a highly versatile and simple technique which can increase the expression level of a protein in an E. coli expression system or a yeast expression system. Using an E. coli expression system or a yeast expression system, a target protein is expressed as a tag-added protein to which a peptide tag composed of an amino acid sequence SK, SKX, SKXX (SEQ ID NO. 1), AKXX (SEQ ID NO. 29), or KKXX (SEQ ID NO. 30) (wherein X represents any amino acid residue) is linked at the N-terminal.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: April 13, 2021
    Assignee: National University Corporation Nagoya University
    Inventors: Hideo Nakano, Teruyo Kato
  • Publication number: 20200300862
    Abstract: A microorganism identification method according to the present invention includes a step of subjecting a sample containing microorganisms to mass spectrometry to obtain a mass spectrum, a step of reading a mass-to-charge ratio m/z of a peak derived from a marker protein from the mass spectrum, and an identification step of identifying which bacteria of serovar of Salmonella genus bacteria the microorganisms contained in the sample contain, based on the mass-to-charge ratio m/z, in which at least one of two types of ribosomal proteins S8 and Peptidylpropyl isomerase is used as the marker protein.
    Type: Application
    Filed: March 31, 2016
    Publication date: September 24, 2020
    Applicants: SHIMADZU CORPORATION, MEIJO UNIVERSITY
    Inventors: Hiroto TAMURA, Naomi YAMAMOTO, Teruyo KATO, Keisuke SHIMA, Shinji FUNATSU
  • Publication number: 20200032275
    Abstract: The present invention is intended to provide a highly versatile and simple technique which can increase the expression level of a protein in an E. coli expression system or a yeast expression system. Using an E. coli expression system or a yeast expression system, a target protein is expressed as a tag-added protein to which a peptide tag composed of an amino acid sequence SK, SKX, SKXX, AKXX, or KKXX (wherein X represents any amino acid residue) is linked at the N-terminal.
    Type: Application
    Filed: June 15, 2016
    Publication date: January 30, 2020
    Applicant: National University Corporation Nagoya University
    Inventors: Hideo Nakano, Teruyo Kato
  • Publication number: 20190369128
    Abstract: A sample group forming section 24 classifies samples derived from microorganisms into groups according to empirical information showing the species or strain of each sample. A differential analysis section 27 performs a differential analysis using a peak matrix created based on the result of the grouping. An operator enters group rearrangement conditions concerning the drug resistance of microorganisms. Under the entered conditions, a sample group rearranging/rearrangement-cancelling section 25 rearranges the already formed groups by selecting or merging groups using another kind of previously registered empirical information which shows the drug resistance of each group. The differential analysis section 27 performs a differential analysis using a peak matrix newly created based on the result of the rearrangement of the groups. Thus, differential analysis results concerning the resistance to different drugs can be sequentially acquired as the group rearrangement condition is successively changed.
    Type: Application
    Filed: November 9, 2017
    Publication date: December 5, 2019
    Applicant: Shimadzu Corporation
    Inventors: Yoshihiro YAMADA, Koretsugu OGATA, Hiroto TAMURA, Teruyo KATO
  • Patent number: 10466104
    Abstract: [Problem to be Solved] To select a marker peak which characterizes a difference between groups, even when the number of samples belonging to each group is small. [Solution] A peak matrix is created based on the peaks detected from mass spectra of a plurality of samples belonging to a plurality of groups (S1-S3). Each row of the peak matrix represents a peak-intensity distribution for a large number of samples at one mass-to-charge-ratio value. If there is no difference between the groups at a certain mass-to-charge-ratio value, the peak-intensity distribution at that mass-to-charge-ratio value should be a lognormal distribution (or normal distribution). Accordingly, a hypothesis test for the conformity of the peak-intensity distribution to the lognormal distribution is performed for each mass-to-charge-ratio value (S5). A mass-to-charge-ratio value at which a significant difference has been found is selected as a candidate of the marker peak (S6).
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: November 5, 2019
    Assignee: SHIMADZU CORPORATION
    Inventors: Yosihiro Yamada, Hiroto Tamura, Teruyo Kato
  • Publication number: 20190250169
    Abstract: In a method for analyzing a microorganism using a matrix assisted laser desorption/ionization mass spectrometer, a matrix-and-additive mixture solution prepared by mixing one or both of an alkylphosphonic acid and a surfactant with a matrix substance is used for matrix assisted laser desorption/ionization. Either an alkylphosphonic acid or a surfactant, or both of them are used as matrix additives and are mixed with the matrix substance beforehand to prepare a matrix-and-additive mixture solution. After a solution which contains a microorganism to be analyzed has been dropped onto a sample plate, the matrix-and-additive mixture solution is dropped onto that solution and dried to form a mixed crystal which contains both the constituents of the microorganism and the matrix substance. This crystal is used as a sample for MALDI-MS analysis. The sensitivity of analysis is thereby improved, without increasing the amount of time and labor required for sample preparation.
    Type: Application
    Filed: February 12, 2019
    Publication date: August 15, 2019
    Applicant: Shimadzu Corporation
    Inventors: Yuko FUKUYAMA, Hiroto TAMURA, Teruyo KATO
  • Publication number: 20190242903
    Abstract: To provide a method for discriminating a microorganism including: a step of subjecting a sample containing a microorganism to mass spectrometry to obtain a mass spectrum; a reading step of reading a mass-to-charge ratio m/z of a peak derived from a marker protein from the mass spectrum; and a discrimination step of discriminating which bacterial species of Escherichia coli, Shigella bacteria, and Escherichia albertii the microorganism contained in the sample contains based on the mass-to-charge ratio m/z, in which at least one of 13 ribosomal proteins S5, L15, S13, L31, L22, L19, L20, L13, S15, L25, HNS, HdeB, and L29 is used as the marker protein.
    Type: Application
    Filed: March 31, 2016
    Publication date: August 8, 2019
    Applicants: SHIMADZU CORPORATION, MEIJO UNIVERSITY
    Inventors: Hiroto TAMURA, Naomi YAMAMOTO, Teruyo KATO, Keisuke SHIMA, Shinji FUNATSU
  • Publication number: 20190120851
    Abstract: A microorganism identification method includes steps of: obtaining a mass spectrum through mass spectrometry of a sample including microorganisms; reading, from the mass spectrum, a mass-to-charge ratio m/z of a peak associated with a marker protein; and identifying which bacterial species of the genus Campylobacter are included in the microorganisms in the sample based on the mass-to-charge ratio m/z. The microorganism identification method is further characterized in that at least one of the following 18 marker proteins is used as the marker protein, S10, L23, S19, L22, L16, L29, S17, L14, L24, S14, L18, L15, L36, S13, S11 (Me), L32, and L7/L12.
    Type: Application
    Filed: March 31, 2016
    Publication date: April 25, 2019
    Applicants: SHIMADZU CORPORATION, MEIJO UNIVERSITY
    Inventors: Hiroto TAMURA, Naomi YAMAMOTO, Teruyo KATO, Keisuke SHIMA, Shinji FUNATSU
  • Publication number: 20190056407
    Abstract: To provide a method for discriminating a microorganism by selecting and using a marker protein capable of reproducibly and quickly discriminating a bacterial species of the genus Listeria. The method for discriminating a microorganism according to the present invention includes: a step of subjecting a sample containing a microorganism to mass spectrometry to obtain a mass spectrum; a reading step of reading a mass-to-charge ratio m/z of a peak derived from a marker protein from the mass spectrum; and a discrimination step of discriminating which bacterial species of Listeria bacteria the microorganism contained in the sample contains based on the mass-to-charge ratio m/z, in which at least one of 17 ribosomal proteins L3, L4, L23, L2, L24, L6, L18, S5, L15, S13, S11, L10, L21, L13, S9, L31, S16 is used as the marker protein and particularly at least one of 8 ribosomal proteins L24, L6, L18, L15, S9, L31, S16 among the 17 ribosomal proteins is used.
    Type: Application
    Filed: March 31, 2016
    Publication date: February 21, 2019
    Applicants: SHIMADZU CORPORATION, MEIJO UNIVERSITY
    Inventors: Hiroto TAMURA, Naomi YAMAMOTO, Teruyo KATO, Keisuke SHIMA, Shinji FUNATSU
  • Publication number: 20180340827
    Abstract: Problem to be Solved To select a marker peak which characterizes a difference between groups, even when the number of samples belonging to each group is small. Solution A peak matrix is created based on the peaks detected from mass spectra of a plurality of samples belonging to a plurality of groups (S1-S3). Each row of the peak matrix represents a peak-intensity distribution for a large number of samples at one mass-to-charge-ratio value. If there is no difference between the groups at a certain mass-to-charge-ratio value, the peak-intensity distribution at that mass-to-charge-ratio value should be a lognormal distribution (or normal distribution). Accordingly, a hypothesis test for the conformity of the peak-intensity distribution to the lognormal distribution is performed for each mass-to-charge-ratio value (S5). A mass-to-charge-ratio value at which a significant difference has been found is selected as a candidate of the marker peak (S6).
    Type: Application
    Filed: May 22, 2018
    Publication date: November 29, 2018
    Applicant: SHIMADZU CORPORATION
    Inventors: Yosihiro YAMADA, Hiroto TAMURA, Teruyo KATO