Patents by Inventor Tetsuya YAMANAKA

Tetsuya YAMANAKA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118348
    Abstract: A method of estimating life of a nickel-metal hydride battery that accommodates a positive electrode plate and a negative electrode plate facing the positive electrode plate with a separator therebetween and containing a hydrogen absorbing alloy together with an electrolyte is disclosed. A charge phase of charging the nickel-metal hydride battery and a discharge phase of discharging the nickel-metal hydride battery after the charge phase constitutes one cycle for charge/discharge of the nickel-metal hydride battery. The method includes: determining a rate of change after one charge/discharge cycle of a surface area of the negative electrode plate which is a boundary face in contact with the electrolyte, and determining an amount of corrosion of the hydrogen absorbing alloy based on the rate of change accumulated for n charge/discharge cycles to estimate the life of the nickel-metal hydride battery based on the amount of corrosion.
    Type: Application
    Filed: September 27, 2023
    Publication date: April 11, 2024
    Inventors: Tetsuya Yamane, Tetsu Yamanaka, Masanori Tamura, Hideyuki Asanuma
  • Publication number: 20240111128
    Abstract: A vehicle display device includes a housing including an opening, an image display device that outputs display light of an image, and a mirror that includes a main body including a reflective surface that reflects the display light toward the opening and is rotatable around a rotation axis. The mirror includes a first and a second ribs that extend along a first direction, and face each other in a second direction. The first rib is formed as a rib closest to a side of the upper end on the back surface, the second rib is formed as a rib closest to a side of the lower end on the back surface, and a central region between the first and the second ribs on the back surface is formed as a flat curved surface, at least a part of which extends from the first rib to the second rib.
    Type: Application
    Filed: September 22, 2023
    Publication date: April 4, 2024
    Inventors: Yuki Miyoshi, Yasuhiro Katsumata, Akira Yamanaka, Tetsuya Suganuma, Hiroshi Sano
  • Publication number: 20240111166
    Abstract: A mirror device includes a mirror including a main body portion having a reflection surface that reflects display light, and a rotating shaft protruding from a first side wall of the main body portion, and a driving member that includes a motor including an output shaft arranged parallel to the rotating shaft, and neighboring the rotating shaft in a direction orthogonal to a rotation axis line of the rotating shaft, a first gear portion coupled to the output shaft, and a second gear portion engaged with the first gear portion, and coupled to the rotating shaft, and rotates the mirror by transmitting rotation of the output shaft of the motor to the rotating shaft via the first gear portion and the second gear portion.
    Type: Application
    Filed: September 15, 2023
    Publication date: April 4, 2024
    Inventors: Yuki Miyoshi, Yasuhiro Katsumata, Akira Yamanaka, Naoto Tsubakihara, Hiroshi Sano, Tetsuya Suganuma, Masaaki Nakamura
  • Patent number: 11919382
    Abstract: An electrically driven vehicle includes a floor panel, a tunnel section, an electrical storage device, and an electric power line. The tunnel section is formed in a vehicle forward/rearward direction in a central portion of the floor panel in a vehicle width direction. The electrical storage device is disposed behind the tunnel section of the vehicle above the floor panel. The electric power line is disposed below the tunnel section and connected to the electrical storage device. The tunnel section has an opening portion formed in a rear end portion of the tunnel section located in front of the electrical storage device of the vehicle and through which the electric power line is inserted.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: March 5, 2024
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Yasunori Mukumoto, Tetsuya Sugizaki, Hirotaka Hayakawa, Daichi Yamanaka, Ryoji Ando, Shinya Nakayama
  • Patent number: 10753543
    Abstract: A steam turbine pipe 1 of an embodiment includes: an upper half side main steam pipe 11 that leads steam to a steam turbine; an upper half side main steam control valve 30 that intervenes in the upper half side main steam pipe 11; and a post-valve drain pipe 31 that is connected to the upper half side main steam control valve 30 and leads drain to an outside. The steam turbine pipe 1 further includes: a shut-off valve 32 that intervenes in the post-valve drain pipe 31; and a branching pipe 60 that makes the post-valve drain pipe 31 on the side closer to the upper half side main steam control valve 30 than is the shut-off valve 32 communicate with the upper half side main steam pipe 11 between the upper half side main steam control valve 30 and a high-pressure turbine 200.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: August 25, 2020
    Assignees: TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION, TOSHIBA PLANT SYSTEMS & SERVICES CORPORATION
    Inventors: Yuichi Nakamura, Tomoo Ohfuji, Tsutomu Shioyama, Hiroki Shiraishi, Makoto Takahashi, Tsutomu Ooishi, Daisuke Asakura, Toshihiko Endo, Hiroyuki Tao, Tetsuya Yamanaka, Koji Kanbe, Hiroyuki Nishi
  • Publication number: 20190120437
    Abstract: A steam turbine pipe 1 of an embodiment includes: an upper half side main steam pipe 11 that leads steam to a steam turbine; an upper half side main steam control valve 30 that intervenes in the upper half side main steam pipe 11; and a post-valve drain pipe 31 that is connected to the upper half side main steam control valve 30 and leads drain to an outside. The steam turbine pipe 1 further includes: a shut-off valve 32 that intervenes in the post-valve drain pipe 31; and a branching pipe 60 that makes the post-valve drain pipe 31 on the side closer to the upper half side main steam control valve 30 than is the shut-off valve 32 communicate with the upper half side main steam pipe 11 between the upper half side main steam control valve 30 and a high-pressure turbine 200.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Applicants: TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION, TOSHIBA PLANT SYSTEMS & SERVICES CORPORATION
    Inventors: Yuichi NAKAMURA, Tomoo Ohfuji, Tsutomu Shioyama, Hiroki Shiraishi, Makoto Takahashi, Tsutomu Ooishi, Daisuke Asakura, Toshihiko Endo, Hiroyuki Tao, Tetsuya Yamanaka, Koji Kanbe, Hiroyuki Nishi
  • Publication number: 20190120436
    Abstract: A steam turbine pipe 1 of an embodiment includes: an upper half side main steam pipe 11 that leads steam to a steam turbine; an upper half side main steam control valve 30 that intervenes in the upper half side main steam pipe 11; and a post-valve drain pipe 31 that is connected to the upper half side main steam control valve 30 and leads drain to an outside. The steam turbine pipe 1 further includes: a shut-off valve 32 that intervenes in the post-valve drain pipe 31; and a branching pipe 60 that makes the post-valve drain pipe 31 on the side closer to the upper half side main steam control valve 30 than is the shut-off valve 32 communicate with the upper half side main steam pipe 11 between the upper half side main steam control valve 30 and a high-pressure turbine 200.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Applicants: TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION, TOSHIBA PLANT SYSTEMS & SERVICES CORPORATION
    Inventors: Yuichi Nakamura, Tomoo Ohfuji, Tsutomu Shioyama, Hiroki Shiraishi, Makoto Takahashi, Tsutomu Ooishi, Daisuke Asakura, Toshihiko Endo, Hiroyuki Tao, Tetsuya Yamanaka, Koji Kanbe, Hiroyuki Nishi
  • Patent number: 10203069
    Abstract: A steam turbine pipe 1 of an embodiment includes: an upper half side main steam pipe 11 that leads steam to a steam turbine; an upper half side main steam control valve 30 that intervenes in the upper half side main steam pipe 11; and a post-valve drain pipe 31 that is connected to the upper half side main steam control valve 30 and leads drain to an outside. The steam turbine pipe 1 further includes: a shut-off valve 32 that intervenes in the post-valve drain pipe 31; and a branching pipe 60 that makes the post-valve drain pipe 31 on the side closer to the upper half side main steam control valve 30 than is the shut-off valve 32 communicate with the upper half side main steam pipe 11 between the upper half side main steam control valve 30 and a high-pressure turbine 200.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: February 12, 2019
    Assignees: TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION, TOSHIBA PLANT SYSTEMS & SERVICES CORPORATION
    Inventors: Yuichi Nakamura, Tomoo Ohfuji, Tsutomu Shioyama, Hiroki Shiraishi, Makoto Takahashi, Tsutomu Ooishi, Daisuke Asakura, Toshihiko Endo, Hiroyuki Tao, Tetsuya Yamanaka, Koji Kanbe, Hiroryuki Nishi
  • Patent number: 9034121
    Abstract: A low alloy steel ingot contains from 0.15 to 0.30% of C, from 0.03 to 0.2% of Si, from 0.5 to 2.0% of Mn, from 0.1 to 1.3% of Ni, from 1.5 to 3.5% of Cr, from 0.1 to 1.0% of Mo, and more than 0.15 to 0.35% of V, and optionally Ni, with a balance being Fe and unavoidable impurities. Performing quality heat treatment including a quenching step and a tempering step to the low alloy steel ingot to obtain a material, which has a grain size number of from 3 to 7 and is free from pro-eutectoid ferrite in a metallographic structure thereof, and which has a tensile strength of from 760 to 860 MPa and a fracture appearance transition temperature of not higher than 40° C.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: May 19, 2015
    Assignees: THE JAPAN STEEL WORKS,LTD., KABUSHIKI KAISHA TOSHIBA
    Inventors: Satoru Ohsaki, Kazuhiro Miki, Tsukasa Azuma, Koji Kajikawa, Shigeru Suzuki, Masayuki Yamada, Itaru Murakami, Kenichi Okuno, Liang Yan, Reki Takaku, Akihiro Taniguchi, Tetsuya Yamanaka, Makoto Takahashi, Kenichi Imai, Osamu Watanabe, Joji Kaneko
  • Patent number: 9016114
    Abstract: A method of measuring a steam turbine according to an embodiment has: installing a measuring device into the inside of the steam turbine through an inspection hole or a manhole of the steam turbine or an inspection hole or a manhole of a condenser connected to the steam turbine, when the steam turbine is halted; and measuring a position and a dimension of an axial key or a center key of the steam turbine by using the measuring device, without opening a turbine casing of the steam turbine.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: April 28, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasunori Ono, Tetsuya Yamanaka, Kentaro Takagi
  • Publication number: 20140311601
    Abstract: A steam turbine pipe 1 of an embodiment includes: an upper half side main steam pipe 11 that leads steam to a steam turbine; an upper half side main steam control valve 30 that intervenes in the upper half side main steam pipe 11; and a post-valve drain pipe 31 that is connected to the upper half side main steam control valve 30 and leads drain to an outside. The steam turbine pipe 1 further includes: a shut-off valve 32 that intervenes in the post-valve drain pipe 31; and a branching pipe 60 that makes the post-valve drain pipe 31 on the side closer to the upper half side main steam control valve 30 than is the shut-off valve 32 communicate with the upper half side main steam pipe 11 between the upper half side main steam control valve 30 and a high-pressure turbine 200.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 23, 2014
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Plant Systems & Services Corporation
    Inventors: Yuichi NAKAMURA, Tomoo Ohfuji, Tsutomu Shioyama, Hiroki Shiraishi, Makoto Takahashi, Tsutomu Ooishi, Daisuke Asakura, Toshihiko Endo, Hiroyuki Tao, Tetsuya Yamanaka, Koji Kanbe, Hiroryuki Nishi
  • Publication number: 20130233064
    Abstract: A method of measuring a steam turbine according to an embodiment has: installing a measuring device into the inside of the steam turbine through an inspection hole or a manhole of the steam turbine or an inspection hole or a manhole of a condenser connected to the steam turbine, when the steam turbine is halted; and measuring a position and a dimension of an axial key or a center key of the steam turbine by using the measuring device, without opening a turbine casing of the steam turbine.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 12, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasunori ONO, Tetsuya YAMANAKA, Kentaro TAKAGI
  • Publication number: 20120261038
    Abstract: A low alloy steel ingot contains from 0.15 to 0.30% of C, from 0.03 to 0.2% of Si, from 0.5 to 2.0% of Mn, from 0.1 to 1.3% of Ni, from 1.5 to 3.5% of Cr, from 0.1 to 1.0% of Mo, and more than 0.15 to 0.35% of V, and optionally Ni, with a balance being Fe and unavoidable impurities. Performing quality heat treatment including a quenching step and a tempering step to the low alloy steel ingot to obtain a material, which has a grain size number of from 3 to 7 and is free from pro-eutectoid ferrite in a metallographic structure thereof, and which has a tensile strength of from 760 to 860 MPa and a fracture appearance transition temperature of not higher than 40 ° C.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 18, 2012
    Applicants: KABUSHIKI KAISHA TOSHIBA, THE JAPAN STEEL WORKS, LTD.
    Inventors: Satoru OHSAKI, Kazuhiro MIKI, Tsukasa AZUMA, Koji KAJIKAWA, Shigeru SUZUKI, Masayuki YAMADA, Itaru MURAKAMI, Kenichi OKUNO, Liang YAN, Reki TAKAKU, Akihiro TANIGUCHI, Tetsuya YAMANAKA, Makoto TAKAHASHI, Kenichi IMAI, Osamu WATANABE, Joji KANEKO