Patents by Inventor Theodore KETAI

Theodore KETAI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11974767
    Abstract: Systems and methods for treating cellulite including an apparatus that applies or a method involving separating septa to eliminate or reduce the appearance of cellulite. In one approach, an interventional tool is placed between tissue layers to engage and treat septa connecting tissue layers between which fat deposits are contained.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: May 7, 2024
    Assignee: Revelle Aesthetics, Inc.
    Inventors: Joshua Makower, Jonathan Podmore, Earl Bright, II, John Hanley, Pablo Acosta, Theodore Ketai, William Sauway Law, Michael Schaller, Bryan Hartley
  • Patent number: 11911555
    Abstract: Systems and methods for treating cellulite including an apparatus that applies or a method involving disrupting, stretching, re-orienting or tearing septa to eliminate or reduce the appearance of cellulite. In one approach, an expandable member is placed between tissue layers to stretch or tear septa connecting tissue layers between which fat deposits are contained.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: February 27, 2024
    Assignee: Revelle Aesthetics, Inc.
    Inventors: Joshua Makower, Jonathan Podmore, Earl Bright, II, John Hanley, Pablo Acosta, Theodore Ketai, William Sauway Law, Bryan Hartley
  • Publication number: 20220183714
    Abstract: Systems and methods for treating cellulite including an apparatus that applies or a method involving separating septa to eliminate or reduce the appearance of cellulite. In one approach, an interventional tool is placed between tissue layers to engage and treat septa connecting tissue layers between which fat deposits are contained.
    Type: Application
    Filed: March 4, 2022
    Publication date: June 16, 2022
    Inventors: Jonathan Podmore, Earl Bright, II, Joshua Makower, Bryan Hartley, John Hanley, Pablo Acosta, Theodore Ketai, William Sauway Law, Michael Schaller, Arthur Ferdinand, Charles Okehie, Christopher Scott Jones, Amanda White
  • Patent number: 11116888
    Abstract: Systems and methods for treating cellulite including an apparatus that applies or a method involving disrupting, stretching, re-orienting or tearing septa to eliminate or reduce the appearance of cellulite. In one approach, an expandable member is placed between tissue layers to stretch or tear septa connecting tissue layers between which fat deposits are contained.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: September 14, 2021
    Assignee: Revelle Aesthetics, Inc.
    Inventors: Earl Bright, II, Jonathan Podmore, Joshua Makower, John Hanley, Pablo Acosta, Theodore Ketai, William Sauway Law, Bryan Hartley
  • Publication number: 20210161551
    Abstract: Systems and methods for treating cellulite including an apparatus that applies or a method involving disrupting, stretching, re-orienting or tearing septa to eliminate or reduce the appearance of cellulite. In one approach, an expandable member is placed between tissue layers to stretch or tear septa connecting tissue layers between which fat deposits are contained.
    Type: Application
    Filed: February 17, 2021
    Publication date: June 3, 2021
    Inventors: Earl Bright II, Jonathan Podmore, Joshua Makower, John Hanley, Pablo Acosta, Theodore Ketai, William Sauway Law, Bryan Hartley
  • Patent number: 11013527
    Abstract: Systems and methods for treating cellulite including an apparatus that applies or a method involving separating septa to eliminate or reduce the appearance of cellulite. In one approach, an interventional tool is placed between tissue layers to engage and treat septa connecting tissue layers between which fat deposits are contained.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: May 25, 2021
    Assignee: NC8, Inc.
    Inventors: Jonathan Podmore, Earl Bright, II, Joshua Makower, John Hanley, Pablo Acosta, Theodore Ketai, William Sauway Law, Michael Schaller, Bryan Hartley
  • Publication number: 20210138127
    Abstract: Systems and methods for treating cellulite including an apparatus that applies or a method involving disrupting, stretching, re-orienting or tearing septa to eliminate or reduce the appearance of cellulite. In one approach, an expandable member is placed between tissue layers to stretch or tear septa connecting tissue layers between which fat deposits are contained.
    Type: Application
    Filed: January 21, 2021
    Publication date: May 13, 2021
    Inventors: Joshua Makower, Jonathan Podmore, Earl Bright II, John Hanley, Pablo Acosta, Theodore Ketai, William Sauway Law, Bryan Hartley
  • Publication number: 20210137551
    Abstract: Systems and methods for treating cellulite including an apparatus that applies or a method involving separating septa to eliminate or reduce the appearance of cellulite. In one approach, an interventional tool is placed between tissue layers to engage and treat septa connecting tissue layers between which fat deposits are contained.
    Type: Application
    Filed: January 21, 2021
    Publication date: May 13, 2021
    Inventors: Joshua Makower, Jonathan Podmore, Earl Bright II, John Hanley, Pablo Acosta, Theodore Ketai, William Sauway Law, Michael Schaller, Bryan Hartley
  • Publication number: 20200360018
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 19, 2020
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kent DELL, Theodore KETAI, Tanmay MISHRA, Stephanie JONES, Jacob GREENBERG, Michael HONG, Daniel HALE, Francisco VALENCIA, Steven TYLER
  • Patent number: 10792039
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: October 6, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kent Dell, Theodore Ketai, Tanmay Mishra, Stephanie Jones, Jacob Greenberg, Michael Hong, Daniel Hale, Francisco Valencia, Steven Tyler
  • Patent number: 10743876
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: August 18, 2020
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Kent Dell, Theodore Ketai, Tanmay Mishra, Stephanie Jones, Jacob Greenberg, Michael Hong, Daniel Hale, Francisco Valencia, Steven Tyler
  • Patent number: 10624640
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: April 21, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kent Dell, Theodore Ketai, Tanmay Mishra, Stephanie Jones, Jacob Greenberg, Michael Hong, Daniel Hale, Francisco Valencia, Steven Tyler
  • Publication number: 20200078019
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kent DELL, Theodore KETAI, Tanmay MISHRA, Stephanie JONES, Jacob GREENBERG, Michael HONG, Daniel HALE, Francisco VALENCIA, Steven TYLER
  • Publication number: 20200000473
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Application
    Filed: August 14, 2019
    Publication date: January 2, 2020
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kent DELL, Theodore KETAI, Tanmay MISHRA, Stephanie JONES, Jacob GREENBERG, Michael HONG, Daniel HALE, Francisco VALENCIA, Steven TYLER
  • Publication number: 20150182223
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Application
    Filed: March 10, 2015
    Publication date: July 2, 2015
    Inventors: Theodore KETAI, Jacob GREENBERG, Daniel HALE, Tanmay MISHRA, Gabriel GONZALES, Raghuveer BASUDE, Michael HONG
  • Patent number: 9011468
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 21, 2015
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Theodore Ketai, Jacob Greenberg, Daniel Hale, Tanmay Mishra, Gabriel Gonzales, Raghuveer Basude, Michael Hong
  • Publication number: 20150105804
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kent DELL, Theodore KETAI, Tanmay MISHRA, Stephanie JONES, Jacob GREENBERG, Michael HONG, Daniel HALE, Francisco VALENCIA, Steven TYLER
  • Patent number: 8945177
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: February 3, 2015
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Kent Dell, Theodore Ketai, Tanmay Mishra, Stephanie Jones, Jacob Greenberg, Michael Hong, Daniel Hale, Francisco Valencia, Steven Tyler
  • Publication number: 20140207161
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kent DELL, Theodore KETAI, Tanmay MISHRA, Stephanie JONES, Jacob GREENBERG, Michael HONG, Daniel HALE, Francisco VALENCIA, Steven TYLER
  • Publication number: 20130066341
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Theodore KETAI, Jacob GREENBERG, Daniel HALE, Tanmay MISHRA, Gabriel GONZALES, Raghuveer BASUDE, Michael Hong