Patents by Inventor Theodorus W. Geerits

Theodorus W. Geerits has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230026433
    Abstract: An isolator for an acoustic logging system includes an outer housing surface, a bore, an outer bore surface, and a first isolator feature positioned between the outer housing surface and the outer bore surface to reduce a collar wave transmitted by the acoustic source.
    Type: Application
    Filed: July 20, 2022
    Publication date: January 26, 2023
    Applicant: Baker Hughes Oilfield Operations LLC
    Inventors: Stefan Schimschal, Anna Swiatek, Theodorus W. Geerits
  • Patent number: 8944183
    Abstract: The present disclosure is related to apparatuses and methods measuring and processing a characteristic of subsurface earth formations penetrated by a borehole. More specifically this present disclosure relates to a method and apparatus for measuring and processing an acoustic characteristic such as formation shear wave velocity of subsurface sonic waves after these waves traverse earth formations adjoining a borehole or passing through a portion of the subsurface. The apparatus may include: a bottomhole assembly, a drill bit configured to generate an acoustic signal, at least two acoustic detectors, and a processor. The acoustic signal may include a specific multipole signal that may propagate through an earth formation along the borehole. The method may include use of the apparatus, including steps for estimating a shear velocity of the acoustic signal using signals from the at least two acoustic detectors.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: February 3, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Theodorus W. Geerits, Douglas J. Patterson
  • Patent number: 8868347
    Abstract: A method and computer-readable medium for determining a scattered wave particle velocity for a formation is disclosed. In aspects, the method may include: defining an embedded grid of the formation, and defining a contrast grid of the formation that includes a contrast feature of the formation; calculating a Green's function over the embedded grid; calculating a first scattering vector of the contrast feature for a first offset between the embedded grid and the contrast grid; determining the scattered wave particle velocity for the contrast feature at the first offset using the calculated Green's function and the first scattering vector; calculating a second scattering vector of the contrast feature for a second offset between the embedded grid and the contrast grid; and determining the scattered wave particle velocity for the contrast feature at the second offset is determined using the calculated Green's function and the second scattering vector.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: October 21, 2014
    Assignee: Baker Hughes Incorporated
    Inventor: Theodorus W. Geerits
  • Patent number: 8811114
    Abstract: The present disclosure is related to apparatuses and methods for downhole acoustic logging. The tool may be used for generating a guided borehole wave that propagates into the formation as a body wave, reflects from an interface, and is converted back into a guided borehole wave. Guided borehole waves resulting from reflection of the body wave are used to image a reflector. Methods may include processing of acoustic logging signals including: wavefield separation, auto-correlation of wavefield components, filtering using a dip filter, and estimating a distance to the reflective interface.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: August 19, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Theodorus W. Geerits, Thomas Bohlen, Olaf Hellwig
  • Publication number: 20130179082
    Abstract: A method and computer-readable medium for determining a scattered wave particle velocity for a formation is disclosed. In aspects, the method may include: defining an embedded grid of the formation, and defining a contrast grid of the formation that includes a contrast feature of the formation; calculating a Green's function over the embedded grid; calculating a first scattering vector of the contrast feature for a first offset between the embedded grid and the contrast grid; determining the scattered wave particle velocity for the contrast feature at the first offset using the calculated Green's function and the first scattering vector; calculating a second scattering vector of the contrast feature for a second offset between the embedded grid and the contrast grid; and determining the scattered wave particle velocity for the contrast feature at the second offset is determined using the calculated Green's function and the second scattering vector.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 11, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Theodorus W. Geerits
  • Publication number: 20120069713
    Abstract: The present disclosure is related to apparatuses and methods for downhole acoustic logging. The tool may be used for generating a guided borehole wave that propagates into the formation as a body wave, reflects from an interface, and is converted back into a a guided borehole wave. Guided borehole waves resulting from reflection of the body wave are used to image a reflector. Methods may include processing of acoustic logging signals including: wavefield separation, auto-correlation of wavefield components, filtering using a dip filter, and estimating a distance to the reflective interface.
    Type: Application
    Filed: August 16, 2011
    Publication date: March 22, 2012
    Applicant: Baker Hughes Incorporated
    Inventors: Theodorus W. Geerits, Thomas Bohlen, Olaf Hellwig
  • Patent number: 8125848
    Abstract: Multipole acoustic logging-while-drilling (LWD) tools and associated methods are disclosed herein. In some embodiments, the disclosed acoustic LWD tool comprises a transmitter array and at least one receiver array. The transmitter array generates acoustic waves with an excitation pattern having a cutoff frequency greater than about 3 kHz. The receiver array is spaced apart from the transmitter array and is configured to detect said acoustic waves. Some of the disclosed method embodiments comprise: generating multipole acoustic waves in a fluid-filled borehole using an excitation pattern with a cutoff frequency greater than about 3 kHz; selectively detecting acoustic waves that propagate with said excitation pattern; and determining an acoustic shear wave slowness for a formation penetrated by the borehole.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: February 28, 2012
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Theodorus W. Geerits, Batakrishna Mandal, Denis P. Schmitt
  • Publication number: 20120037423
    Abstract: The present disclosure is related to apparatuses and methods measuring and processing a characteristic of subsurface earth formations penetrated by a borehole. More specifically this present disclosure relates to a method and apparatus for measuring and processing an acoustic characteristic such as formation shear wave velocity of subsurface sonic waves after these waves traverse earth formations adjoining a borehole or passing through a portion of the subsurface. The apparatus may include: a bottomhole assembly, a drill bit configured to generate an acoustic signal, at least two acoustic detectors, and a processor. The acoustic signal may include a specific multipole signal that may propagate through an earth formation along the borehole. The method may include use of the apparatus, including steps for estimating a shear velocity of the acoustic signal using signals from the at least two acoustic detectors.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 16, 2012
    Applicant: Baker Hughes Incorporated
    Inventors: Theodorus W. Geerits, Douglas J. Patterson