Patents by Inventor Theresa Chang

Theresa Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190040491
    Abstract: A thermally treated metal sheet or article as well as processes and systems for making the thermally treated sheet or article is provided. The process comprises heating and/or cooling the metal sheet by non contact thermal conduction for sufficiently long to provide a desired microstructure and mechanical properties. The process results in thermally treated metal sheets.
    Type: Application
    Filed: January 27, 2017
    Publication date: February 7, 2019
    Inventors: Dana Craig Bookbinder, Theresa Chang, Jeffrey John Domey, Peter Joseph Lezzi, Richard Orr Maschmeyer, John Christopher Thomas, Kevin Lee Wasson
  • Publication number: 20180351130
    Abstract: A laser weldable device housing substrate, device housing and related method are provided. The substrate includes a first surface, a second surface opposite the first surface, and a thin inorganic particle layer supported by the first surface. The inorganic particle layer includes a plurality of particles arranged in a layer on the first surface. The particles have an average diameter of less than or equal to 1.0 ?m, and the inorganic particle layer has an average thickness of less than or equal to 5 ?m.
    Type: Application
    Filed: November 22, 2016
    Publication date: December 6, 2018
    Inventors: Heather Debra Boek, Theresa Chang, Leonard Charles Dabich, Mark Alan Lewis, Stephan Lvovich Logunov, Mark Alejandro Quesada, Wageesha Senaratne, Alexander Mikhailovich Streltsov
  • Publication number: 20180318169
    Abstract: Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may include a glass body formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP <660> or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating may be positioned on at least a portion of the first surface of the glass body the low-friction coating may include a polymer and a coupling agent disposed between the polymer and the first surface of the glass body. A coefficient of friction of the portion of the coated pharmaceutical package with the low-friction coating is at least 20% less than a coefficient of friction of a surface of an uncoated pharmaceutical package formed from the same glass composition.
    Type: Application
    Filed: June 30, 2018
    Publication date: November 8, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 10117806
    Abstract: The glass containers described herein are resistant to delamination, have improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. The body may also have a compressively stressed layer extending from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body, such that the outer surface of the body with the lubricous coating has a coefficient of friction less than or equal to 0.7.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 6, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren, Dana Craig Bookbinder
  • Publication number: 20180303708
    Abstract: Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may Include a glass body formed from borosilicate glass that meets Type 1 criteria according to USP <660> or alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating comprising a polymer may be positioned on a portion of the exterior surface. A coefficient of friction of an abraded area of the portion of the exterior surface with the low-friction coating may be less than 0.7 after exposure to a temperature of 260° C. for 30 minutes and abrasion under a load of at least 10 N and does not have observable damage. A retained strength of the coated glass article in horizontal compression does not decrease by more than 20% after the temperature exposure and the abrasion.
    Type: Application
    Filed: June 30, 2018
    Publication date: October 25, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Publication number: 20180297324
    Abstract: A method of controllably bonding a thin sheet having a thin sheet bonding surface with a carrier having a carrier bonding surface, by depositing a carbonaceous surface modification layer onto at least one of the thin sheet bonding surface and the carrier bonding surface, incorporating polar groups with the surface modification layer, and then bonding the thin sheet bonding surface to the carrier bonding surface via the surface modification layer. The surface modification layer may include a bulk carbonaceous layer having a first polar group concentration and a surface layer having a second polar group concentration, wherein the second polar group concentration is higher than the first polar group concentration. The surface modification layer deposition and the treatment thereof may be performed by plasma polymerization techniques.
    Type: Application
    Filed: March 14, 2018
    Publication date: October 18, 2018
    Inventors: Kaveh Adib, Robert Alan Bellman, Dana Craig Bookbinder, Theresa Chang, Shiwen Liu, Robert George Manley, Prantik Mazumder
  • Patent number: 10086584
    Abstract: Surface modification layers and associated heat treatments, that may be provided on a sheet, a carrier, or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, for example. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: October 2, 2018
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Dana Craig Bookbinder, Robert George Manley, Prantik Mazumder, Theresa Chang, Jeffrey John Domey, Darwin Gene Enicks, Vasudha Ravichandran, Alan Thomas Stephens, II, John Christopher Thomas
  • Patent number: 10046542
    Abstract: A method of controllably bonding a thin sheet having a thin sheet bonding surface with a carrier having a carrier bonding surface, by depositing a carbonaceous surface modification layer onto at least one of the thin sheet bonding surface and the carrier bonding surface, incorporating polar groups with the surface modification layer, and then bonding the thin sheet bonding surface to the carrier bonding surface via the surface modification layer. The surface modification layer may include a bulk carbonaceous layer having a first polar group concentration and a surface layer having a second polar group concentration, wherein the second polar group concentration is higher than the first polar group concentration. The surface modification layer deposition and the treatment thereof may be performed by plasma polymerization techniques.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: August 14, 2018
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Robert Alan Bellman, Dana Craig Bookbinder, Theresa Chang, Shiwen Liu, Robert George Manley, Prantik Mazumder
  • Patent number: 10034816
    Abstract: A pharmaceutical package may include a glass body enclosing an inner volume and having an exterior surface. The glass body may be formed from a borosilicate glass that meets the Type 1 criteria according to USP <660>or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A coupling agent layer having a first thickness less than or equal to 100 nm may be disposed on the exterior surface of the glass body. A polymer layer having a second thickness of less than 50 nm may be positioned over the coupling agent layer. The exterior surface of the glass body with the coupling agent layer and the polymer layer may have a coefficient of friction less than or equal to 0.7.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: July 31, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 10023495
    Abstract: The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. A compressively stressed layer may extend from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body. The outer surface of the body with the lubricous coating may have a coefficient of friction less than or equal to 0.7.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: July 17, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren, Dana Craig Bookbinder
  • Patent number: 10014177
    Abstract: Methods for making electronic devices on thin sheets bonded to carriers. A surface modification layer and associated heat treatments, may be provided on a sheet, a carrier, or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier during the electronic device processing. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, during the electronic device processing. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, during the electronic device processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: July 3, 2018
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Dana Craig Bookbinder, Robert George Manley, Prantik Mazumder, Theresa Chang, Jeffrey John Domey, Darwin Gene Enicks, Vasudha Ravichandran, Alan Thomas Stephens, II, John Christopher Thomas
  • Publication number: 20180116907
    Abstract: Glass articles with coatings are disclosed herein. According to embodiments, a glass article may include a glass body comprising glass and having a first surface and a second surface opposite the first surface, wherein the first surface is an exterior surface of the glass body. A coating disposed on at least a portion of the exterior surface of the glass body. The coated glass article may have an effective throughput rate greater than or equal to 1.10×RT, wherein RT is the effective throughput rate of an uncoated glass article in units of parts per minute (ppm).
    Type: Application
    Filed: December 28, 2017
    Publication date: May 3, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky, Kyle Christopher Hoff
  • Publication number: 20180113490
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: December 15, 2017
    Publication date: April 26, 2018
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 9918898
    Abstract: Low-friction coatings and glass articles with low-friction coatings are disclosed. According to one embodiment, a coated glass article may include a glass body comprising a first surface and a low-friction coating positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. The coated glass article may be thermally stable at a temperature of at least about 260° C. for 30 minutes. A light transmission through the coated glass article may be greater than or equal to about 55% of a light transmission through an uncoated glass article for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 20, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 9898046
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: February 20, 2018
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20170348192
    Abstract: Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may include a glass body comprising a first surface and a second surface opposite the first surface. The glass body may be a glass container formed from a borosilicate glass composition and the first surface is an exterior surface of the glass container. A low-friction coating may be positioned on at least a portion of the first surface of the glass body. In embodiments, the low-friction coating may be a fluoropolymer.
    Type: Application
    Filed: August 25, 2017
    Publication date: December 7, 2017
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Publication number: 20170340527
    Abstract: An exfoliant composition including: a microbead comprising a core and a shell: the core comprising an abrasive particle having an average particle size of from 50 to 1,000 microns; and the shell comprising a hydrogel. Also disclosed is a method of making the exfoliant composition and a method of using the exfoliant composition.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 30, 2017
    Inventors: Theresa Chang, Ye Fang, David Henry, Wendell Porter Weeks, Ying Wei
  • Publication number: 20170334604
    Abstract: Disclosed herein are delamination resistant glass pharmaceutical containers which may include an aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to ISO 720-1985 testing standard. The glass containers may also have a compressive stress layer with a depth of layer of greater than 25 ?m. A surface compressive stress of the glass containers may be greater than or equal to 350 MPa. The delamination resistant glass pharmaceutical containers may be ion exchange strengthened and the ion exchange strengthening may include treating the delamination resistant glass pharmaceutical container in a molten salt bath for a time less than or equal to 5 hours at a temperature less than or equal to 450° C.
    Type: Application
    Filed: July 21, 2017
    Publication date: November 23, 2017
    Applicant: CORNING INCORPORATED
    Inventors: Kaveh Adib, Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Andrei Gennadyevich Fadeev, James Patrick Hamilton, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Robert Anthony Schaut, Susan Lee Schiefelbein, Christopher Lee Timmons
  • Publication number: 20170320773
    Abstract: In embodiments, a delamination resistant glass pharmaceutical package includes a glass body formed from a Type 1 Class glass composition according to ASTM Standard E438-92, the glass body having a wall portion with an inner surface and an outer surface. The glass body may have at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP <660>. An interior region of the glass body may extend from about 10 nm below the inner surface and having a persistent layer homogeneity. The glass body may also have a surface region extending over the inner surface and having a persistent surface homogeneity such that the glass body is resistant to delamination.
    Type: Application
    Filed: July 21, 2017
    Publication date: November 9, 2017
    Applicant: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Patent number: 9775775
    Abstract: Coated pharmaceutical packages are disclosed. In embodiments, a coated pharmaceutical package includes a glass body comprising a first surface. A low-friction coating may be positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. A light transmission through the coated pharmaceutical package may be greater than or equal to about 55% of a light transmission through an uncoated pharmaceutical package for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: October 3, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky